Answer:
6
Step-by-step explanation:
2*3=6
I did the test
the value of the test statistic for the appropriate chi-square test is approximately 8.25 8.25 . assume the conditions for inference were met. do the sample data provide convincing statistical evidence of an association between grade in the preceding biology i i course and whether a student asks for clarification at the 5 5 percent level of significance?
Yes, there is convincing statistical evidence of an association between grade in the preceding Biology II course and whether a student asks for clarification at the 5% level of significance, with a test statistic of 8.25 and a p-value less than 0.05.
To determine if there is convincing statistical evidence of an association between grade in the preceding Biology II course and whether a student asks for clarification, we need to conduct a hypothesis test using the chi-square test.
Null Hypothesis: There is no association between grade in the preceding Biology II course and whether a student asks for clarification.
Alternative Hypothesis: There is an association between grade in the preceding Biology II course and whether a student asks for clarification.
Since the test statistic for the chi-square test is given as 8.25, we need to find the corresponding p-value for this test statistic. The p-value is the probability of obtaining a test statistic as extreme or more extreme than the observed test statistic, assuming the null hypothesis is true.
We can use a chi-square distribution table with 1 degree of freedom (since we have 2 categories - whether the student asks for clarification or not - and 3 levels of grade in the preceding Biology II course) to find the p-value. The p-value for a test statistic of 8.25 with 1 degree of freedom is less than 0.01.
Learn more about chi-square test
https://brainly.com/question/14082240
#SPJ4
a sno-cone machine priced at 139 is on sale for 20 off. the sales tax rate is 6.75. what is the price of the sno-cone machine after the discount and sales tax
Answer:
About $118.70
Step-by-step explanation:
139 x .2 = 27.8
139 - 27.8 = 111.2
111.2 x .0675 = 7.5
111.2 + 7.5 = 118.7
118.7 = $118.70
blank as 9 hundred is 9 thousand
Answer:
x = 10
Step-by-step explanation:
x × 900 = 9000
=> 900x = 9000
=> x = 10
cos 45° cos 30° + sin 45° sin 30°
Answer: hi hope this helps
Step-by-step explanation:
para ayudar a una fundación, algunos estudiantes de grado séptimo decidieron reunir alimentos y donarlos. Andrea aporto 2,5 hg de arroz, mateo llevo - kg de frijol, catalina ayudo con - kg de arroz y juan coopero con 3,75 kg de frijol A) ¿ cuanto arroz y cuanto frijol recogieron en total B) ¿Qué recogieron mas, arroz o frijol?
Answer:
c
Step-by-step explanation:
The code range utilized for the exercise, 400-403, represents (select all that apply):
The code range 400-403 represents **client errors**.
HTTP status codes are used to indicate the status of an HTTP response. The code range 400-403 indicates that the client has made a request that the server cannot process. Some of the most common client errors include:
* **400 Bad Request:** The request was malformed and could not be understood by the server.
* **401 Unauthorized:** The request requires authentication and the client did not provide valid credentials.
* **403 Forbidden:** The client does not have permission to access the requested resource.
In general, client errors are caused by errors in the client's request. The client can usually fix these errors by modifying the request.
Here is a table showing the HTTP status codes in the range 400-403:
| Code | Description |
|---|---|
| 400 Bad Request | The request was malformed and could not be understood by the server. |
| 401 Unauthorized | The request requires authentication and the client did not provide valid credentials. |
| 402 Payment Required | The request requires payment and the client did not provide payment information. |
| 403 Forbidden | The client does not have permission to access the requested resource. |
| 404 Not Found | The requested resource could not be found on the server. |
| 405 Method Not Allowed | The requested method is not supported by the resource. |
| 406 Not Acceptable | The requested resource does not have a format that the client can accept. |
| 407 Proxy Authentication Required | The request requires proxy authentication and the client did not provide proxy credentials. |
As you can see, the code range 400-403 represents a variety of client errors. The specific error code that is returned will depend on the specific error that occurred.
to learn more about range click here:
brainly.com/question/20259728
#SPJ11
Is the inequality below true or false, if m
m+9
True
False
a production process produces 3% defective parts. a sample of five parts from the production process is selected. what is the probability that the sample contains exactly two defective parts?
The probability that a sample of five parts from a production process that produces 3% defective parts contains exactly two defective parts is approximately 0.2834.
To find this probability, we can use the binomial probability formula:
P(X = 2) = (5 choose 2) * 0.03^2 * (1 - 0.03)^3
Where "X" is the number of defective parts in the sample, "5 choose 2" represents the number of ways to choose 2 defective parts out of 5, and 0.03 and (1 - 0.03) represent the probabilities of selecting a defective and non-defective part, respectively.
Using a calculator, we can simplify and compute:
P(X = 2) = (5 choose 2) * 0.03^2 * 0.97^3
= 10 * 0.0009 * 0.9127
≈ 0.0081
Therefore, the probability is approximately 0.0081 or 0.81%.
To know more about probability, refer here:
https://brainly.com/question/29964401#
#SPJ11
What is the equation of the line that passes through the point (-4,-3)(−4,−3) and has a slope of -3/4
The equation of the line is y = -(3/4)x - 6.
What is a line?A line is a perfectly straight, one-dimensional shape that extends endlessly in both directions and has no thickness.
Given that, the line passes through the points (-4,-3) and has a slope of -3/4.
The equation of the line in point-slope form is:
y - y₁= m (x -x ₁)
Substitute (x₁,y₁) = (-4,-3) and m = -3/4 into the above equation,
y - (-3) = -3/4 (x - (-4))
y + 3 = -3/4 (x + 4)
y = -(3/4)x -3 -3
y = -(3/4)x - 6
Hence, the equation of the line is y = -(3/4)x - 6.
To learn more about the line, click here:
brainly.com/question/17188072
#SPJ1
16x - (3x + 9) + 17 simplify will give branliest
Answer:
13x + 8
Step-by-step explanation:
16x - (3x + 9) + 17
16x + -3x + -9 + 17
Where there is a negative in front of the parenthesis you can imagine a -1 in place.
16x - 3x = 13x and -9 + 17= 8
So all that's left is 13x + 8
Hope that helps and have a great day!
find the opposite of ( 3x + 9 ) - since it's in the negative
16x - 3x - 9 + 17combine 16x and -3x to get 13x
13x - 9 + 17add - 9 and 17 to get 8 and finally you should have ...
= 13x + 8hope that helps :) please ask me if you have any questions related
This season a softball player scores 6 runs more than three times the number of runs she bats in (also known as RBIs). She scores 108 runs this season. How many RBIs did this player have? a. 34 runs c. 42 runs b. 38 runs d. 30 runs
PLZ!!!!!!!!!!!!!!!!!!!!!!!!!!!!! HURRY!!!!!!!!!!!!
Answer:
38
Step-by-step explanation:
Answer:
34 i got it right
Step-by-step explanation:
If z is a standard normal variable, find the probability: The probability that z is less than 1.13
A. 0.8708
B. 0.8907
C. 0.8485
D. 0.1292
Answer:
The correct answer is B. 0.8907.
If z is a standard normal variable, it follows a normal distribution with a mean of 0 and a standard deviation of 1. This means that the probability of z being less than 1.13 can be found by looking up the corresponding z-score in a standard normal table, which shows the probabilities for different values of a standard normal variable.
The probability of z being less than 1.13 is 0.8907, which is the probability associated with the z-score of 1.13 in a standard normal table. This is the correct answer, so the answer is B.
Policies Current Attempt in Progress < O $36000. $25056. $43200. O $25920. Concord Company purchased equipment for $180000 on January 1, 2020, and will use the double-declining-balance method of depreciation. It is estimated that the equipment will have a 5-year life and a $6500 salvage value at the end of its useful life. The amount of depreciation expense recognized in the year 2022 will be Save for Later -/5 E 1 Attempts: 0 of 1 used Submit Answer
The expenses recognized for depriciation in the year 2022 will be $69,400.
To calculate the depreciation expense recognized in the year 2022 using the double-declining-balance method, we need to determine the depreciable base and the depreciation rate.
Depreciable base = Equipment cost - Salvage value
Depreciable base = $180,000 - $6,500
Depreciable base = $173,500
Depreciation rate = (2 / Useful life) = (2 / 5) = 0.4 or 40%
Now, we can calculate the depreciation expense for the year 2022.
Depreciation expense for the year = Depreciable base * Depreciation rate
Depreciation expense for the year = $173,500 * 0.4
Depreciation expense for the year = $69,400
Therefore, the depreciation expense recognized in the year 2022 will be $69,400.
To know more about depriciation click on below link :
https://brainly.com/question/32917165#
#SPJ11
A baseball diamond is a square that is 90 feeton
each side. What is the distance from home to
second base?
Answer:
x = 127 ft
Step-by-step explanation:
Answer:45 ft
Step-by-step explanation:X^2= (90ft)^2 + (90ft)^2
"Find the equation of the plane with the following properties:
Passing through the point (4,-1,2) and orthogonal to the line
{x,y,z}={7,5,-6}+t{2,-4,1}."
The equation of the plane is 2x - 4y + z - 12 = 0.
We need to find the equation of the plane with the following properties:
Passing through the point (4, -1, 2) and orthogonal to the line {x, y, z} = {7, 5, -6} + t{2, -4, 1}.
To find the equation of the plane, we will first find its normal vector.
Since the plane is orthogonal to the given line, its normal vector will be parallel to the direction vector of the line.
The direction vector of the given line is {2, -4, 1}.
Therefore, the normal vector of the plane will be {2, -4, 1}.
Now, we can use the point-normal form of the equation of the plane to write the equation of the plane.
The equation of the plane passing through point (a, b, c) with normal vector {m, n, p} is given by:
(x - a)/m = (y - b)/n
= (z - c)/p
We have a = 4, b = -1, c = 2, and m = 2, n = -4, p = 1.
Substituting the values, we get:
(x - 4)/2 = (y + 1)/(-4)
= (z - 2)/1
Multiplying the second ratio by -1, we get:
(x - 4)/2 = (y + 1)/4
= (z - 2)/1
Therefore, the equation of the plane is:
2(x - 4) - 4(y + 1) + 1(z - 2) = 0
Simplifying, we get:
2x - 4y + z - 12 = 0
Thus, the equation of the plane is 2x - 4y + z - 12 = 0.
To know more about plane visit:
https://brainly.com/question/2400767
#SPJ11
Tell whether the two quantities vary directly. Explain your reasoning.
the number of correct answers on a test and the score on the test
Choose the correct answer below.
OA. No, they do not vary directly. When one quantity increases, the other quantity does not increase.
OB. No, they do not vary directly. When one quantity increases, the other quantity also increases.
C. Yes, they vary directly. When one quantity increases, the other quantity also increases.
OD. Yes, they vary directly. When one quantity increases, the other quantity does not increase.
The correct statement regarding the variation of the two measures is given as follows:
C. Yes, they vary directly. When one quantity increases, the other quantity also increases.
What are positive and negative association?Two variables have a positive association when the values of one variable increase as the values of the other variable increase, that is, the quantities vary directly.Two variables have a negative association when the values of one variable decrease as the values of the other variable increase, that is, the quantities vary inversely.For this problem, we have that when the number of correct answers on the test increases, the score also does, hence the two quantities vary directly, and option c is the correct option for this problem.
More can be learned about negative and positive association at brainly.com/question/23489661
#SPJ1
What is the range of the function f(x) = -2(6^x) + 3?
o (-inf,-2]
0 (-inf,3)
O [-2,inf)
O [3,inf)
Answer:
write question in short form
Step-by-step explanation:
determine the constants a and b so that sinx cosx = asin(x + b)
use this result to integrate
∫ 1/sin x + costx dx
The constants a and b are 2 and -π/4 respectively, and the integral of (1/sin(x) + cos(x)) dx is given by -2cos(x - π/4) - cos(x) + C.
The constants a and b are 2 and -π/4 respectively, and the integral of (1/sin(x) + cos(x)) dx is given by -2cos(x - π/4) - cos(x) + C.
To determine the constants a and b such that sin(x) cos(x) = a sin(x + b), we can use the double-angle formula for sine: sin(2x) = 2sin(x)cos(x). By comparing this with the given equation, we can see that a = 2 and b = -π/4.
Now, let's proceed to the integration of ∫(1/sin(x) + cos(x)) dx using the result we obtained. First, we rewrite the integral as ∫(1/sin(x) + cos(x)) dx = ∫(csc(x) + cos(x)) dx.
We can rewrite csc(x) as 1/sin(x), and since a = 2 and b = -π/4, we can rewrite cos(x) as sin(x - π/4). Therefore, the integral becomes ∫(2sin(x - π/4) + sin(x)) dx.
Now, using the linearity property of integration, we split the integral into two parts: ∫2sin(x - π/4) dx + ∫sin(x) dx.
The integral of 2sin(x - π/4) dx can be easily evaluated using the substitution method, where u = x - π/4. The integral becomes ∫2sin(u) du = -2cos(u) + C.
The integral of sin(x) dx is -cos(x) + C.
Putting it all together, the result of the integration is -2cos(x - π/4) - cos(x) + C.
Learn more about constants here : brainly.com/question/31730278
#SPJ11
What are the zeros for the polynomial, y = 9 (x – 5) (z? – 16) (2 – 7)select all that apply.
5
4
-4
7
9
1
Answer:
hm
Step-by-step explanation:
m
A distribution of 9 values has a median of 27 . If all values decrease 4 points, the median will become 31 27 Cannot be determined without additional information 23 QUESTION 21 Men's heights have a mean of 165 cm and a standard deviation of 6 cm. The z-score corresponding to the height of Salern is 2.6. How tall is Salem? Round your answer to the nearest whole number.
Rounding to the nearest whole number, Salem is approximately 181 cm tall.
The z-score formula is (x - mean) / standard deviation,
where x is the value you want to find the z-score for.
Rearranging the formula, we have x = (z-score * standard deviation) + mean. In this case, the mean is 165 cm and the z-score is 2.6.
The standard deviation is 6 cm. Plugging these values into the formula, we get x = (2.6 * 6) + 165 = 180.6 cm.
Rounding to the nearest whole number, Salem is approximately 181 cm tall.
To know more about whole number visit:
brainly.com/question/29766862
#SPJ11
for the equation x=sin^-1(1/u), state which letter represents the angle and which letter represents the value fo the trigonometric function.
In the equation\(`x = sin^-1(1/u)`,\) the letter x represents the angle while the letter u represents the value of the trigonometric function.
The inverse sine function is defined as the arc or angle whose sine is equivalent to the value of the input argument.
It's also known as the arcsine function. In trigonometry, it is commonly represented as \(sin^-1\) or arcsin.
In trigonometry, the sine function is defined as the ratio of the length of the opposite side to the length of the hypotenuse of a right-angled triangle.
It is often abbreviated as sin.
The sine of an angle x is denoted by
sin(x) = Opposite side / Hypotenuse.
For any angle x, the sine function returns a value between -1 and 1.
In summary, x represents the angle in the equation \(x = sin^-1(1/u)\)while u represents the value of the trigonometric function, which is equal to 1/sin(x).
Know more about the trigonometric function.
https://brainly.com/question/25618616
#SPJ11
The ponderal indexis a measure of the "leanness" of a person. A person who is h inches tall and weighs w pounds has a ponderal index I given by I = a. Compule the ponderal index for a person who is 76 inches tall and weighs 192 pounds: Round to the nearest hundredth. b. What is a man's weight if he is 77 inches tall and has a ponderal index of 11.56 ? Round to the nearest whole number. a. The ponderal index for a person who is 76 inches tall and weighs 192 pounds is (Round to the nearest hundredth as needed.)
The ponderal index cannot be computed without the value of the constant "a" in the formula. Therefore, the ponderal index for a person who is 76 inches tall and weighs 192 pounds cannot be determined.
To compute the ponderal index, we need the formula and the value of the constant "a."
a) The formula for the ponderal index is given as I = a, where I represents the ponderal index and a is a constant. However, the value of the constant "a" is missing in the provided information. Without knowing the value of "a," we cannot compute the ponderal index for a person who is 76 inches tall and weighs 192 pounds.
b) Similarly, without knowing the value of the constant "a," we cannot determine the weight of a man who is 77 inches tall and has a ponderal index of 11.56.
To compute the ponderal index or determine the weight, we need the specific value of the constant "a" in the given formula.
Learn more about index here :-
https://brainly.com/question/32793068
#SPJ11
3. Four pencils and two pens cost $0.74. Six pencils and five pens cost $1.53.
Find the cost of a pencil and a pen.
Answer: The cost of a pencil and a pen is 8 cents
A circle is translated 4 units to the right and then reflected over the x-axis. Complete the statement so that it will always be true of the circle at the new location.
Answer:
The statement is now presented as:
\(\exists\, (h,k)\in \mathbb{R}^{2} /f: (x-h^{2})+(y-k)^{2}=r^{2}\implies f': [x-(h+4)]^{2}+[y-(-k)]^{2} = r^{2}\)
In other words, this mathematical statement can be translated as:
There is a point (h, k) in the set of real ordered pairs so that a circumference centered at (h,k) and with a radius r implies a equivalent circumference centered at (h+4,-k) and with a radius r.
Step-by-step explanation:
Let \(C = (h,k)\) the coordinates of the center of the circle, which must be transformed into \(C'=(h', k')\) by operations of translation and reflection. From Analytical Geometry we understand that circles are represented by the following equation:
\((x-h)^{2}+(y-k)^{2} = r^{2}\)
Where \(r\) is the radius of the circle, which remains unchanged in every operation.
Now we proceed to describe the series of operations:
1) Center of the circle is translated 4 units to the right (+x direction):
\(C''(x,y) = C(x, y) + U(x,y)\) (Eq. 1)
Where \(U(x,y)\) is the translation vector, dimensionless.
If we know that \(C(x, y) = (h,k)\) and \(U(x,y) = (4, 0)\), then:
\(C''(x,y) = (h,k)+(4,0)\)
\(C''(x,y) =(h+4,k)\)
2) Reflection over the x-axis:
\(C'(x,y) = O(x,y) - [C''(x,y)-O(x,y)]\) (Eq. 2)
Where \(O(x,y)\) is the reflection point, dimensionless.
If we know that \(O(x,y) = (h+4,0)\) and \(C''(x,y) =(h+4,k)\), the new point is:
\(C'(x,y) = (h+4,0)-[(h+4,k)-(h+4,0)]\)
\(C'(x,y) = (h+4, 0)-(0,k)\)
\(C'(x,y) = (h+4, -k)\)
And thus, \(h' = h+4\) and \(k' = -k\). The statement is now presented as:
\(\exists\, (h,k)\in \mathbb{R}^{2} /f: (x-h^{2})+(y-k)^{2}=r^{2}\implies f': [x-(h+4)]^{2}+[y-(-k)]^{2} = r^{2}\)
In other words, this mathematical statement can be translated as:
There is a point (h, k) in the set of real ordered pairs so that a circumference centered at (h,k) and with a radius r implies a equivalent circumference centered at (h+4,-k) and with a radius r.
Answer:
the same area as
Step-by-step explanation:
When a circle is translated and reflected, the center of the circle will change; however, its area, circumference, radius and diameter remain the same.
This is so because, translation and reflection only affect the positioning of the circle not the size.
Considering the above analysis, we can conclude that option d answers the question correctly.
Geometry. Math nation section 3
∠g and ∠h are complementary angles and ∠g and ∠h are acute angles are true statements from the given information
Two angles are given.
∠g = (2x-90)°
∠h = (180-2x)°
We have to find the statement which is true about the angles g and h.
If both angles are greater than zero.
Complementary angles add up to 90 degrees
i.e., ∠g and ∠h are complementary if ∠g + ∠h = 90°.
Substituting the given values:
∠g + ∠h
= (2x-90)° + (180-2x)° = 90°
Thus, ∠g and ∠h are complementary angles.
and both the angles are less than 90 degrees so we can tell that angles ∠g and ∠h are acute.
So the statement ∠g and ∠h are acute angles is also true
Hence, ∠g and ∠h are complementary angles and ∠g and ∠h are acute angles are true statements
To learn more on Angles click:
https://brainly.com/question/28451077
#SPJ1
SOLVE THIS PROBLEM ASAP PLS
a) By looking at the picture, we can tell that the orange weighs 135 grams.
b) Now when we look at the picture, we see they have added an apple. The total weight is 250 grams. 250 grams - 115 grams, so the apple weighs 115 grams.
Have a nice day!
I hope this is what you are looking for, but if not - comment! I will edit and update my answer accordingly. (ノ^∇^)
- Heather
Comparing two algorithms.
Say we have two different algorithms with respective runtimes of f(n) and g(n). Given the following cases, prove whether or not f(n) = ϴ(g(n)) is true in each case. Show your work but with the crucial steps only. P.S. sqrt(n) means the square-root of n, aka n^(½).
Case
f(n)
g(n)
A
log(n^200)
log(n^2)
B
sqrt(n)
log(n)
C
3^n
5^n
D
sin(n)+3
cos(n)+1
f(n) = ϴ(g(n)) is not true in cases B(sqrt(n)log(n), C(\(3^n 5^n\)), and D(sin(n)+3 cos(n)+1).
A) \(log(n^200) log(n^2)\)
Here, f(n) = \(log(n^200)\) and g(n) = \(log(n^2)\). Now, if we take the limit of f(n) / g(n) as n approaches infinity, then:
f(n) / g(n) = \([log(n^200) / log(n^2)]\) = 100
This means that as n approaches infinity, the ratio f(n) / g(n) is constant, and so we can say that f(n) = ϴ(g(n)). Therefore, f(n) = ϴ(g(n)) is true in this case.
B) sqrt(n) log(n) Here, f(n) = sqrt(n) and g(n) = log(n). Now, if we take the limit of f(n) / g(n) as n approaches infinity, then:
f(n) / g(n) = [sqrt(n) / log(n)]
As log(n) grows much slower than sqrt(n) as n approaches infinity, this limit approaches infinity. Therefore, we cannot say that f(n) = ϴ(g(n)) is true in this case.
C) 3^n 5^n
Here, f(n) = \(3^n\) and g(n) = \(5^n\) . Now, if we take the limit of f(n) / g(n) as n approaches infinity, then:
f(n) / g(n) = \([3^n / 5^n]\)
As \(3^n\) grows much slower than \(5^n\) as n approaches infinity, this limit approaches zero. Therefore, we cannot say that f(n) = ϴ(g(n)) is true in this case.
D) sin(n) + 3 cos(n) + 1
Here, f(n) = sin(n) + 3 and g(n) = cos(n) + 1. Now, if we take the limit of f(n) / g(n) as n approaches infinity, then:
f(n) / g(n) = [sin(n) + 3] / [cos(n) + 1]
As this limit oscillates between positive and negative infinity as n approaches infinity, we cannot say that f(n) = ϴ(g(n)) is true in this case.
Therefore, f(n) = ϴ(g(n)) is not true in cases B, C, and D.
To know more about log refer here:
https://brainly.com/question/32621120
#SPJ11
Statistical procedures that summarize and describe a series of observations are called?
Statistical procedures that summarize and describe a series of observations are called descriptive statistics.
Descriptive statistics involve various techniques and measures that aim to summarize and describe the key features of a dataset. These procedures include measures of central tendency, such as the mean, median, and mode, which provide information about the typical or average value of the data. Measures of dispersion, such as the range, variance, and standard deviation, quantify the spread or variability of the data points.
In addition to these measures, descriptive statistics also involve graphical representations, such as histograms, box plots, and scatter plots, which provide visual summaries of the data distribution and relationships between variables. These graphical tools help in identifying patterns, outliers, and the overall shape of the data.
Descriptive statistics play a crucial role in providing a concise summary of the data, enabling researchers and analysts to gain insights, make comparisons, and draw conclusions. They form the foundation for further statistical analysis and inferential techniques, which involve making inferences about a population based on a sample.
Learn more about central tendency here:
https://brainly.com/question/12701821
#SPJ11
What is 3 yards 5 feet 6 inches x 7? Please help!
Answer:
33.833 yards
Step-by-step explanation:
3 yards= 3*3 = 9 feet + 5 feet= 14 feet
14 feet= 14*12 = 168 inches
168 inches+6 inches = 174
174 * 7 =1218 inches or 101.5 feet or 33.833 yards
An angle measures 12° less than three times it’s supplement. Find the measure of the angle
Answer:
132 degrees.
Step-by-step explanation:
Let the supplement be x and the angle be y.
x + y = 180 degrees.
y = (3x - 12) degrees.
x + 3x - 12 = 180
4x = 192
x = 48 degrees
y = 132 degrees
Hope this helped!