A Quadratic Equation can have two solutions.
Is trueWhat are the first 5 multiples of 5 what are the first 5multiples of 2 what is the least common multiple(LCM) of 5 and 2
The first 5 multiples of 5 is
Multiples of 5:
5, 10, 15, 20, 25
The first 5 multiples of 2 is
Multiples of 2:
2, 4, 6, 8, 10
Therefore, the LCM of 5 and 2 is 10.
Determine whether 548 is greater than or less than 373. Then write the expression showing this using < or >.
Answer:
548 > 373
Step-by-step explanation:
548 is greater than 373 because when we compare the digits from left to right, we find that the first digit of 548 (5) is greater than the first digit of 373 (3). Therefore, we can conclude that 548 is greater than 373.
The ">" symbol is used to represent "greater than" in mathematical comparisons.
Hope this helps!
Ronald repairs computers. He charges $25 for a house call and $24 per hour. If Ronald charges $145 for one of his jobs, including the house call, which equation can be used to find h, the number of hours he worked?
Answer:
25+24h=145
Step-by-step explanation:
Reuben invested his savings in two investment funds. The $18,000 that he invested in Fund A returned a 5% profit. The amount that he invested in Fund B returned a 1% profit. How much did he invest in Fund B, if both funds together returned a 4% profit?
Answer:
He invested $13500 in fund A, and $4500 in Fund B
Step-by-step explanation:
maths
Please help me on this question and thank you!
Answer:
{YH, YT, BH, BT, TH, TT}
where Y = yellow, B = blue, T = turquoise
H = heads, T= tails
6 possible outcomes
Step-by-step explanation:
There are 2 independent events
Spinner which can land on one of three colors - Yellow(Y), Blue(B) and Turquoise(T)
Flipping a coin which has two outcomes Heads(H) and Tails(T)
Both events are independent of each other
So the sample space is:
{YH, YT, BH, BT, TH, TT}
Total of 6 outcomes
2. Claire drinks 64 fluid ounces of water o day. How many gallons of water does she drink in a week?
Answer:
3.5 gallons a week
Step-by-step explanation:
Well 64 gl Oz is basically half a gallon. So half a gallon of water a day would result in 0.5*7 (7 days in a week) and you would get 3.5 gallons.
simplify √([2m5z6]/[ xy])
The simplified form of √([2m5z6]/[xy]) is (√2m√5z√6) / (√x√y).
To simplify the expression √([2m5z6]/[xy]), we can break it down step by step:
Simplify the numerator:
√(2m5z6) = √(2) * √(m) * √(5) * √(z) * √(6)
= √2m√5z√6
Simplify the denominator:
√(xy) = √(x) * √(y)
Combine the numerator and denominator:
√([2m5z6]/[xy]) = (√2m√5z√6) / (√x√y)
Thus, the simplified form of √([2m5z6]/[xy]) is (√2m√5z√6) / (√x√y).
For such more questions on simplified form
https://brainly.com/question/28323654
#SPJ8
Find all values of m for which the equation has two real solutions.
3x² + 7x- (m + 1) = 0
in which set are all of the numbers solutions to the inequality x < -3?
Answer:
x = -4, -5, -6, -7...
Step-by-step explanation:
x = all negative integers less than -3
Find the perimeter of the following polygon. Be sure to include the correct unit in your answer. 14 in 16 in 16 in
Answer:
Step-by-step explanation:
14in + 16in + 16in = 46in
all you do is add the numbers to get the total.
Help with number 4 please
48 boards
Step-by-step explanation:
length of a board = 5½ in = 11/2
Total length should be covered = 22 ft = 264 in (1ft = 12in)
total boards needed = 264 ÷11/2
= 264 × 2/11
= 24 ×2
= 48 boards
Please mark my answer the brainliest and rate me 5 star and follow meplease please please please please please
One dice and one coin are tossed. What is probability that you will see HEAD on coin and dice will show a number
more than 4. Answer should be in reduced fraction format.
Answer:
1/6
Step-by-step explanation:
1/2 multiplied by 1/3
Which of the following data sets has a range of 40?
a. {40, 10, 20, 100}
C. {40, 10, 20, 50}
b. {40, 10, 20, 80}
d. {40, 10, 20, 40}
Please select the best answer from the choices provided
A
B
С
Answer:
The second answer - 40, 10, 20, 50
Step-by-step explanation:
Range is the difference between the largest and smallest number in a data set. The biggest and smallest numbers in the data set are 50 and 10, respectively. 50 - 10 = 40.
Choose ALL answers that describe the polygon OPQR if m/0 = 80°,
m/P = 80°, m/Q = 100°, m/R = 100°, and OP || QR.
Parallelogram
Quadrilateral
Rectangle
Rhombus
Square
Trapezoid
85 J of work are done on the gas in the process shown in
Figure (1)
p (kPa)
300-
200-
100-
V₁ 2V₁ 3V₁
What is V₁ in cm³?
The number of moles and the temperature remain constant, we can rearrange the equation to solve for V₁ is 2.055 cm³.
What is equation ?An equation is a mathematical statement that expresses the relationship between two or more variables. It typically consists of an expression that is equal to another expression, where each expression contains one or more variables. Equations are used to describe physical and chemical processes, as well as to solve various mathematical problems.
V₁ is the volume of the gas at the beginning of the process. Since the volume is tripled from 2V₁ to 3V₁ and the pressure is reduced from 300 kPa to 100 kPa, we can use the ideal gas law to calculate V₁.
The ideal gas law states that PV = nRT, where P is the pressure, V is the volume, n is the number of moles, R is the ideal gas constant, and T is the temperature.
Since the number of moles and the temperature remain constant, we can rearrange the equation to solve for V₁:
V₁ = (nRT/P₁)
where P₁ is the initial pressure of 300 kPa.
Plugging in the values, we get:
V₁ = (nRT/300)
V₁ = (1 mol * 8.314 J/mol K * 298 K/ 300 kPa)
V₁ = 2.055 cm³
To learn more about equation
https://brainly.com/question/2972832
#SPJ1
5. If the dimensions of a figure are multiplied by 4,
how many times larger will the volume be?
Answer:
The volume will be 64 times larger.
Explanation:
When you multiply two single dimensions, such as length and width, the units will change from units to units squared (example: 2 ft * 2 ft = 4 ft^2). Similarly, When you multiply three single dimensions the units will change from units to units cubed (example: 2 ft * 2 ft * 2 ft = 8 ft^3). You can use the exponents as a trick to solve this type of question. For example, in this case, volume means that you are multiplying three single dimensions. Therefore, the end result will be units cubed. If each dimension is multiplied by four, you can cube the factor to find how many times larger the volume will be: 4^3 = 64.
TLDR: Since there are three dimensions, multiply 4 by itself three times to get the answer: 4 * 4 * 4 = 64.
In case I explained it badly, here is a more mathematical method to find the answer:
The formula for volume:
V = l * w * h
When you multiply each dimension by 4:
V = (4 * l) * (4 * w) * (4 * h)
Rearrange with the Commutative Property of Multiplication:
V = (4 * 4 * 4) * (l * w * h)
Simplify:
V = 64 * l * w * h
Therefore, the volume is 64 times greater.
At the time of her grandson's birth, a grandmother deposits $14,000 in an account that pays 4.5% compounded
monthly. What will be the value of the account at the child's twenty-first birthday, assuming that no other deposits
or withdrawals are made during this period?
i Click the icon to view some finance formulas.
The value of the account will be $
(Round to the nearest dollar as needed.)
4
Answer:
The value of the account will be $5,628
Step-by-step explanation:
Step-by-step explanation:
we know that
The compound interest formula is equal to
where
A is the Final Investment Value
P is the Principal amount of money to be invested
r is the rate of interest in decimal
t is Number of Time Periods
n is the number of times interest is compounded per year
in this problem we have
substitute in the formula above
therefore
The value of the account will be $5,628
solve for w 12=9w-5w
Answer:
answer is w= 3
Step-by-step explanation:
12=9w-5w
12=4w
w= 12/4
w= 3
Answer:
w=3
Step-by-step explanation:
1. 12=9w-5w
2. 12=4w
3. 12/4=4w/4
4. w=3
Show how you got each answer:
What is the measurement of ∟1 if gg || h?
What is the measurement of ∟3 if gg || h?
Step-by-step explanation:
angles 1 and 3 are supplementary angles (together they have 180°), because together they make sure that line f is a straight line, and there are no segments of the line angling "off". a straight line can be always seen as prolonged diameter of a circle. each side represents a half-circle with 180°.
a line intersecting 2 parallel lines has the same intersection angles with both lines, as parallel lines perfectly copy each other's behavior and attributes except for the y-intercept.
the angles of intersecting lines are the same in both sides of any of the 2 lines, they are just left-right mirrored.
therefore,
angle 1 = 82° = angle 2
angle 3 = 180 - angle 1 = 180 - 82 = 98° = angle 4
Answer:
∠1 = 82°
∠3 = 98°
Step-by-step explanation:
You want the measures of angles 1 and 3 where a transversal crosses parallel lines and one of the angles is marked as 82°.
Alternate interior anglesThe "alternate interior angles theorem" tells you that the alternate interior angles created by a transversal crossing parallel lines are congruent. Hence angle 1 is congruent to the one marked 82°.
∠1 = 82°
Linear pairThe angles of a linear pair are supplementary. Angles 1 and 3 form a linear pair, so ...
∠3 = 180° -∠1 = 180° -82°
∠3 = 98°
__
Additional comment
"Interior" angles are between the parallel lines. "Exterior" angles are outside the parallel lines. "Alternate" angles are on opposite sides of the transversal. "Consecutive" or "same-side" angles are on the same side of the transversal. (Angles 2 and 4 are "consecutive".)
"Corresponding" angles are in the same direction from the point of intersection of the transversal with the parallel lines. In this figure, angle 2 and the one marked 82° are corresponding. Corresponding angles are congruent. If you remember that, and that vertical angles are congruent, and linear pairs are supplementary, you can figure out all of the other relationships.
In the end, when the lines are parallel, all of the acute angles are congruent, and all of the obtuse angles are congruent. The acute and obtuse angles are supplementary. The angle relations themselves are pretty simple; the rest is a lot of vocabulary.
I need help answering this
15. Jonas played 9 holes of golf
and received the following
scores. Positive scores indi-
cate that Jonas was above
par. Negative scores indicate
that he was below par. Find
Jonas's total after 9 holes. Is
his score above or below par?
+2, +1,-1, 0, 0, -1, +3,
+4, -1
Answer:
Step-by-step explanation:
To find Jonas's total score after 9 holes of golf, we add up all the individual scores:
+2 + 1 - 1 + 0 + 0 - 1 + 3 + 4 - 1 = 7
Jonas's total score after 9 holes is 7.
Since the total score is positive (above zero), Jonas's score is above par.
what is 3x+(4x-6)=8x+1
Answer:
Standard form:
−x − 7 = 0
Factorization:
−(x + 7) = 0
Solutions:
x = −7
Step-by-step explanation:
hope it helps
fine the nth term of 11,13,15,17
The nth term of 11,13,15,17 is,
⇒ T (n) = 9 + 2n
Given that;
The sequence is,
11, 13, 15, 17, ....
Here, Common difference is,
13 - 11 = 2
15 - 13 = 2
Hence, Sequence is in Arithmetic sequence.
So, the nth term of 11,13,15,17 is,
⇒ T (n) = a + (n - 1)d
⇒ T (n) = 11 + (n - 1) 2
⇒ T (n) = 11 + 2n - 2
⇒ T (n) = 9 + 2n
Thus, The nth term of 11,13,15,17 is,
⇒ T (n) = 9 + 2n
Learn more about the Arithmetic sequence visit:
https://brainly.com/question/6561461
#SPJ1
What equation of the line which passes through the point (-1, 2) and is parallel to the line y=x+4
Answer:
Thus, the equation of line for point (-1, 2) is y = x + 3.
Step-by-step explanation:
Answer:
The equation of the line is y = x + 3.
Step-by-step explanation:
A line that is parallel to y=x+4 and passes through the point (-1,2) will have the same slope as y=x+4. The slope of y=x+4 is 1, so the equation of the line will be in the form y = mx + b, where m=1. To find b, we can plug in x = -1 and y = 2 into the equation and solve for b.
y = mx + b
y = 1 * -1 + b
y = -1 + b
b = y + 1
b = 2 + 1
b = 3
This problem models pollution effects in the Great Lakes. We assume pollutants are flowing into a lake at a constant rate of I kg/year, and that water is flowing out at a constant rate of F km3/year. We also assume that the pollutants are uniformly distributed throughout the lake. If C(t) denotes the concentration (in kg/km3) of pollutants at time t (in years), then C(t) satisfies the differential equationdC dt = −FVC + IVwhere V is the volume of the lake (in km3). We assume that (pollutant-free) rain and streams flowing into the lake keep the volume of water in the lake constant.A) Suppose that the concentration at time t = 0 is C0. Determine the concentration at any time t by solving the differential equation.B) Find lim t→[infinity] C(t) =C) For Lake Erie, V = 458 km3 and F = 175 km3/year. Suppose that one day its pollutant concentration is C0 and that all incoming pollution suddenly stopped (so I = 0). Determine the number of years it would then take for pollution levels to drop to C0/10.D) For Lake Superior, V = 12221 km3 and F = 65.2 km3/year.
SEE BELOW FOR THE CORRECT FORMAT OF THE QUESTION
Answer:
(a) \(\mathbf{C_{(t)} =\dfrac{I}{F} [ 1- e \dfrac{-Ft}{v}+ C_oe \dfrac{-Ft}{v} ]}\)
(b) \(\mathbf{\lim_{t \to \infty} C_t = \dfrac{I}{F}[1-0+ 0 ] \ = \dfrac{I}{F}}\)
(c) T = 6.02619 years
(d) T = 431.593 years
Step-by-step explanation:
(a)
\(\dfrac{dC}{dt} = -\dfrac{F}{v}C + \dfrac{I}{v} \\ \\ \\ \dfrac{dC}{dt} + \dfrac{F}{v}C = \dfrac{I}{v}\)
By integrating the factor of this linear differential equation ; we have :
\(= e \int\limits \dfrac{F}{v}t \\ \\ \\ = e \dfrac{Ft}{v}\)
\(C* e \frac{Ft}{v}= \int\limits \dfrac{I}{v}*e \dfrac{Ft}{v} dt\)
\(C* e \frac{Ft}{v}= \dfrac{I}{v}* \dfrac{e \frac{Ft}{v} }{F/v}+ K\)
\(C* e \frac{Ft}{v}= \dfrac{I}{v}* \dfrac{V}{F} e \dfrac{Ft}{v} + K\)
\(Ce \dfrac{Ft}{v} = \dfrac{I}{F} \ * \ e \dfrac{Ft}{v} + k \ \ \ \ (at \ t = 0 \ ; C = C_o)\)
\(C_o = \dfrac{I}{F} e^o + K\)
\(K = C_o - \dfrac{I}{F}\)
\(C_{(t)} = [ \dfrac{I}{F}e \dfrac{Ft}{v}+ C_o - \dfrac{I}{F}] e\dfrac{-Ft}{v}\)
\(C_{(t)} =\dfrac{I}{F} [ e \dfrac{Ft}{v} * e \dfrac{-Ft}{v}+ C_oe \dfrac{-Ft}{v} - 1* e \dfrac{-Ft}{v}]\)
\(\mathbf{C_{(t)} =\dfrac{I}{F} [ 1- e \dfrac{-Ft}{v}+ C_oe \dfrac{-Ft}{v} ]}\)
(b)
\(\lim_{t \to \infty} C_t = \dfrac{I}{F}[1-e^{- \infty} + C_o e^{- \infty} ]\)
since \((e^{- \infty} = 0)\)
\(\mathbf{\lim_{t \to \infty} C_t = \dfrac{I}{F}[1-0+ 0 ] \ = \dfrac{I}{F}}\)
(c)
V = 458 km³ and F = 175 km³ , I = 0
\(\dfrac{dC}{dt} = - \dfrac{-175}{458}C\)
\(= \int\limits \ \dfrac{dC}{C} = - \dfrac{175}{458}\int\limits dt\)
\(In (C_{(t)}) = - \dfrac{175}{458} t + K\)
\(C_{(t)} = e \dfrac{-175}{458}t + K\)
Let at time t = 0 \(C_{(t)}} = C_o \to C_o = e^{0+k} = e^K\)
\(C_{(t)} = e \dfrac{-175}{458}t\)
Now at time t = T ; \(C_{9t)} = \dfrac{C_o}{10}\)
\(\dfrac{C_o}{10} = C_o e \dfrac{-175}{458}T \to \dfrac{1}{10} = e \dfrac{-175}{458}T\)
\(In ( \dfrac{1}{10}) = \dfrac{-175}{459}T\)
\(- In (10) = \dfrac{175}{458}T\)
\(T = \dfrac{458}{175} In (10)\)
T = 6.02619 years
(d) V = 12221 km³
F = 65.2 km³/ year
\(\mathbf{T = \dfrac{v}{F}In (10)}\)
\(T = \dfrac{12221}{65.2}In (10)\)
T = 431.593 years
What the meaning of "f is order-preserving if x < y implies f(x) < f(y)"?
An order-preserving function is a function that preserves the order of its inputs. In other words, if x is less than y, then f(x) will be less than f(y).
The statement "f is order-preserving if x < y implies f(x) < f(y)" means that if x is less than y, then f(x) must be less than f(y). This is a necessary condition for a function to be order-preserving. However, it is not a sufficient condition. For example, the function f(x) = x^2 is not order-preserving, because 2 < 3, but f(2) = 4 > f(3) = 9.
In summary, order-preserving functions are useful in situations where we need to preserve the order of a set of data.
Learn more on functions:https://brainly.com/question/11624077
#SPJ1
Can you guys help me with this please thank you so much with all that
Answer:
a. 3.65
Check:
3.65 x 20 = 73
b. 9.7
Check:
9.7 x 30 = 291
Step-by-step explanation:
The percent of discount is 20% and the sale price is 28 how much is the original price
Answer:5.6
Step-by-step explanation:
28 divided by 5 is 5.6
Answer: $33.6
Step-by-step explanation: 28(.20) will give us our $5.6 discount. now add that on top of 28.
two integers, a and b, have different signs. the absolute value of inter a is divisible by the absolute value of integer b. Find two integers that fit this description. Then decide if the product of the integers is greater than or less than the quotient of the integers.
Two numbers that meet the condition are a = -10 and b = 2, and the quotient between these is larger than the product.
How to find two integers that fit the description?
We have two numbers a and b with different sign.
Let's say that a is negative and b positive.
We know that the absolute value of a is divisible by the absolute value of b.
|a|/|b|
Then we have that |a| ≥ |b|
An example of two numbers that meet these conditions are:
a = -10
b = 2
Where:
|-10|/|2| = 10/2 = 5
Now, the product between the integers will give a large negative number, in this case:
-10*2 = 20
and the quotient will give a smaller, in absolute value, negative number:
-10/2 = -5
Then we can see that the quotient is larger (as both are negative numbers, and the quotient is closer to zero).
If you want to learn more about absolute values:
https://brainly.com/question/24368848
#SPJ1
find the surface area of the prism
Answer: 132 cm cubed
Step-by-step explanation:
0.5*3*4*2=12
10*5=50
4*10=40
3*10=30
30+40+50+12=132 cm cubed