The answer is 1922, but round and you might get your answer.
Answer:
Meg will pay $10,596.25
Step-by-step explanation:
A=Prt
A=(8650)(.045)(5)= 1946.25
8650+1946.25=10596.25
A=$10,596.25
Whats the value of the dimes?
If P is the circumcenter △ A B C, and AD =3x - 11, DB =5x - 29, PC =18, find DP.
Answer:
8.2
Step-by-step explanation:
1. Since AD is equal to DB, we will need to set 3x-11 equal to 5x-29. When you solve the equation you will get 9 for x.
2. Plug the 9 in for x in DB (you could plug it in for AD instead if you want since DB and AD are equal to each other). You should get 16.
3. Take a look at the smaller triangle DBP which is part of triangle ABC. We will need to use the Pythagorean Theorem. Square the legs of the triangle and set it equal to the hypotenuse squared. One of the legs, DP, is unknown so we will just have it as x. The other leg is DB, which is 16.
* PB is the hypotenuse and has a value of 18. Remember that P is the circumcenter, which means it is equidistant to each vertex and each angle bisector is equal to each other. As a result PC is equal to PB which happens to be 18.
You should have it something like this:
16^2 + x^2 = 18^2
Now do all the squaring and stuff and you should eventually get x^2 = 68
4. Square root x^2 = 68 and you will get a long decimal. You will need to round it to the tenths place.
5. After rounding you will finally get 8.2
The measurement of DP is 8.2 units.
What is circumcenter of a triangle?The circumcenter of a triangle is defined as the point where the perpendicular bisectors of the sides of that particular triangle intersect.
Given that, P is the circumcenter △ ABC, and AD = 3x - 11, DB =5x - 29,
PC = 18
Since, DP bisects AB, so, AB = DP
3x-11 = 5x-29
x = 9
DB = 5*9 - 29 = 16
Since, P is the circumcenter, then PB = PC = PA = 18
Using Pythagoras theorem in Δ BPD
PB² = DB² + DP²
DP² = PB² - DB²
DP² = 18² - 16²
DP² = 324 - 256
DP² = 68
DP = 8.2
Hence, The measurement of DP is 8.2 units.
For more references on circumcenter of a triangle, click;
https://brainly.com/question/16276899
#SPJ3
which statements are true about points A, B, and C? check all that apply.
Answer:
2
Step-by-step explanation:
2 seems to be the only one that is correct
Correct Statements: (modified the statements that are incorrect)
1. The coordinates of point A are (-3, 3)
2. Already correct
3. The coordinates of point C are (-2, -2)
4. Point B is the closest to the y-axis (only one away)
5. Point A is 3 away and Point B is 1 away
(sorry if this is confusing but this is what I got)
Emily is 1.45 meters tall. At 11 a.m., she measures the length of a tree's shadow to be 26.05 meters. She stands 20.6 meters away from the tree, so that the tip of her shadow meets the tip of the tree's shadow. Find the height of the tree to the nearest hundredth of a meter.
Answer:
6.93 meters
Step-by-step explanation:
Use similar triangles to solve
if the tree shadow is 26.05m long and she stands 20.6 meter away from the tree, so her shadow meets the tip, her shadow is 26.05-20.6 = 5.45
height of Emily divided by shadow of Emily must equal height of tree divided by shadow of Tree
1.45 /5.45=x/26.05
26.05 x (1.45/4.45)=x
x= 6.93
Answer:
Step-by-step explanation:
A box has the shape of a rectangular prism with height 28 cm. If the height is increased by 0.2cm, by how much does the surface area of the box increase? L=13 W=8.7 H=28
The surface area of the box increases by 27.4 cm² when the height is increased by 0.2 cm.
To find the increase in surface area, we first need to calculate the initial surface area of the box and then calculate the surface area after increasing the height.
The formula for the surface area of a rectangular prism is given by:
Surface Area = 2*(length width + length height + width*height)
Initial Surface Area:
Length (L) = 13 cm
Width (W) = 8.7 cm
Height (H) = 28 cm
Initial Surface Area = 2*(138.7 + 1328 + 8.7*28)
Next, we calculate the new surface area after increasing the height by 0.2 cm. The new height is:
New Height = Initial Height + Increase in Height = 28 cm + 0.2 cm
New Surface Area = 2*(138.7 + 13(28+0.2) + 8.7*(28+0.2))
To find the increase in surface area, we subtract the initial surface area from the new surface area:
Increase in Surface Area = New Surface Area - Initial Surface Area
Let's calculate the values:
Initial Surface Area = 2*(138.7 + 1328 + 8.728) = 2(113.1 + 364 + 243.6) = 2*(720.7) = 1441.4 cm²
New Surface Area = 2*(138.7 + 13(28+0.2) + 8.7*(28+0.2)) = 2*(113.1 + 377.2 + 244.1) = 2*(734.4) = 1468.8 cm²
Increase in Surface Area = New Surface Area - Initial Surface Area = 1468.8 cm² - 1441.4 cm² = 27.4 cm²
Therefore, the surface area of the box increases by 27.4 cm² when the height is increased by 0.2 cm.
For such more questions on Increase in surface area
https://brainly.com/question/23851972
#SPJ11
Submit A political scientist wants to conduct a research study on a president's approval rating. The researcher has obtained data that states that 45% of citizens are in favor of the president. The researcher wants to determine the probability that 6 out of the next 8 individuals in his community are in favor of the president. What is the binomial coefficient of this study? Write the answer as a number, like this: 42.
Answer: 28
Step-by-step explanation: Im taking the same class here is a photo of the work, divide 56/2 than you get 28
3x-47=180 solve for x
Answer:
x=75.66
Step-by-step explanation:
+47 180+47
3x=227
divide 3 on each side
x=75.66
A 6 inch personal pizza has 640 calories, with 240 of those from fat. A 16 inch pizza is cut into 8 slices. Estimate the number of calories in one slice of a 16 inch pizza.
Answer:568.888888888 or 568 and 8/9
Step-by-step explanation:proportional to the radius squared and then divide by 8. 640*64/(9*8)
If cot Theta = Two-thirds, what is the value of csc Theta? StartFraction StartRoot 13 EndRoot Over 3 EndFraction Three-halves StartFraction StartRoot 13 EndRoot Over 2 EndFraction Eleven-thirds
Answer:
csctheta= \(\frac{\sqrt{13} }{3}\)
Step-by-step explanation:
answer is provided on top
The value of the \(\rm cosec \theta = \frac{\sqrt{13} }{3}\). Cosec is found as the ratio of the hypotenuse and the perpendicular.
What is trigonometry?The field of mathematics is concerned with the relationships between triangles' sides and angles, as well as the related functions of any angle
The given data in the problem is;
\(\rm cot \theta = \frac{2}{3}\)
The \(cot \theta\) is found as;
\(\rm cot \theta = \frac{B}{P} \\\\ \rm cot \theta = \frac{2}{3} \\\\ B=2 \\\\ P=3 \\\\\)
From the phythogorous theorem;
\(\rm H=\sqrt{P^2+B^2} \\\\ \rm H=\sqrt{2^2+3^2} \\\\ H=\sqrt{13} \\\\\)
The value of the cosec is found as;
\(\rm cosec \theta = \frac{H}{P} \\\ \rm cosec \theta = \frac{\sqrt{13} }{3}\)
Hence the value of the \(\rm cosec \theta = \frac{\sqrt{13} }{3}\).
To learn more about the trigonometry refer to the link;
https://brainly.com/question/26719838
Suppose f(x) = x2 – 3x – 9 and g(x) = 2x3. What is the value ofg(8)+f(-3)?
We have the following functions:
\(\begin{gathered} f(x)=x^2-3x-9 \\ g(x)=2x \end{gathered}\)We need to find g(8) + f(-3). The expression g(8) is equivalent to replace 8 in the place of x, that is,
\(\begin{gathered} g(8)=2(8) \\ \text{then, } \\ g(8)=16 \end{gathered}\)Similarly, f(-3) is given by
\(f(-3)=(-3)^2-3(-3)-9\)which gives
\(\begin{gathered} f(-3)=9+9-9 \\ f(-3)=9 \end{gathered}\)Therefore, g(8)+f(-3) is given by
\(g\mleft(8\mright)+f\mleft(-3\mright)=16+9\)so the answer is 25
Professor Ahmad Shaoki please help me! The length of each side of a square is extended 5 in. The area of the resulting square is 64 in,2 Find the length of a side of the
original square. Help me! From: Jessie
The length of the original square must be equal to 3 inches.
Length of the Original SquareTo find the length of the original square, we have to first assume the unknown length is equal x and then use formula of area of a square to determine it's length.
Since the new length is stretched by 5in, the new length would be.
\(l = (x + 5)in\)
The area of a square is given as
\(A = l^2\)
But the area is equal 64 squared inches; let's use substitute the value of l into the equation above.
\(A = l^2\\l = x + 5\\A = 64\\64 = (x+5)^2\\64 = x^2 + 10x + 25\\x^2 + 10x - 39 = 0\\\)
Solving the quadratic equation above;
\(x^2 + 10x - 39 = 0\\x = 3 or x = -13\)
Taking the positive root only, x = 3.
The side length of the original square is equal to 3 inches.
Learn more on area of square here;
https://brainly.com/question/24487155
#SPJ1
Hi, can I send screenshot?
A house blueprint has a scale of 1 in. : 6 ft. The length and width of each room in the actual house are shown in the table. Complete the table by finding the length and width of each room on the blueprint.
Answer:
The dimensions of the rooms in the blueprint will be Living room (), Kitchen (), Office (), Bedroom (), Bedroom (), Bathroom ().
Given information:
A house blueprint has a scale of 1 in : 4 ft.
The length and width of each room in the actual house are shown in the table below:
Living room Kitchen Office Bedroom Bedroom Bathroom
Length 20 16 8 8 20 6
width 8 16 16 16 20 8
The scale factor is of 1 in: 4 ft. So, 4 ft of actual length is equivalent to 1 inch in the blueprint.
So, the length and width of the different rooms in te house in the blueprint will be,
Living room Kitchen Office Bedroom Bedroom Bathroom
Length(in) 5 4 2 2 5 1.5
width(in) 2 4 4 4 5 2
Therefore, the dimensions of the rooms in the blueprint will be Living room (), Kitchen (), Office (), Bedroom (), Bedroom (), Bathroom ().
For more details, refer to the link:
brainly.com/question/2305449
Step-by-step explanation:
hope this helps
Find the probability that a randomly selected point within the square falls in the red-shaded triangle. 3 3 4 P = [?] 4
The required probability is 3 √7 / 32.
Given, a square with sides of length 4 units and a red-shaded triangle with sides 3 units, 3 units and 4 units. We need to find the probability that a randomly selected point within the square falls in the red-shaded triangle.To find the probability, we need to divide the area of the red-shaded triangle by the area of the square. So, Area of square = 4 × 4 = 16 square units. Area of triangle = 1/2 × base × height.
Using Pythagorean theorem, the height of the triangle is found as: h = √(4² − 3²) = √7
The area of the triangle is: A = 1/2 × base × height= 1/2 × 3 × √7= 3/2 √7 square units. So, the probability that a randomly selected point within the square falls in the red-shaded triangle is: P = Area of triangle/Area of square= (3/2 √7) / 16= 3 √7 / 32.
for such more questions on probability
https://brainly.com/question/29070527
#SPJ8
Find all solutions of the equation in the interval [0, 2pi).
sinx = 1 - cosx
Write your answer(s) in radians in terms of t.
If there is more than one solution, separate them with commas.
Answer:
Step-by-step explanation:
Begin by squaring both sides to get rid of the radical. Doing that gives you:
\(sin^2x=1-cosx\)
Now use the Pythagorean identity that says
\(sin^2x =1-cos^2x\) and make the replacement:
\(1-cos^2x=1-cosx\). Now move everything over to one side of the equals sign and set it equal to 0 so you can factor:
\(1-cos^2x+cosx-1=0\) and then simplify to
\(cosx-cos^2x=0\)
Factor out the common cos(x) to get
\(cosx(1-cosx)=0\) and there you have your 2 trig equations:
cos(x) = 0 and 1 - cos(x) = 0
The first one is easy enough to solve. Look on the unit circle and see where, one time around, where the cos of an angle is equal to 0. That occurs at
\(x=\frac{\pi }{2},\frac{3\pi}{2}\)
The second equation simplifies to
cos(x) = 1
Again, look to the unit circle and find where the cos of an angle is equal to 1. That occurs at π only.
So, in the end, your 3 solutions are
\(x=\frac{\pi}{2},\pi,\frac{3\pi}{2}\)
I Need Help With This Question
Answer:
B
Step-by-step explanation:
product means multiplication, but there isn't any multiplication happening
Select all the true statements
The true statements are;
1) AB + BC = AC
Length of BC = |6 - 1|
2) ∠JMK = 50°
∠KML = 35°
How to Interpret Number Line intervals?
1) From the given number line interval, we can deduce the interpretation as follows;
AB + BC = AC
Length of BC = 5 units or |6 - 1|
Length of B = 3 Units
2) We can see that ∠JML is an angle triangle. Thus, ∠JML = 85°. Thus;
6x + 2 + 4x + 3 = 85
10x + 5 = 85
10x = 85 - 5
10x = 80
x = 80/10
x = 8°
Thus;
∠JMK = 6(8) + 2
∠JMK = 50°
∠KML = 85° - 50°
∠KML = 35°
Read more about Number Line Intervals at; https://brainly.com/question/27998235
#SPJ1
prove that:- (1-sinA)(1+sinA)÷(1+cosA)(1-cosA)=cot^2A
Answer:
see explanation
Step-by-step explanation:
Using the trigonometric identity
sin²x + cos²x = 1 , then
sin²x = 1 - cos²x and cos²x = 1 - sin²x
Consider the left side
\(\frac{(1-sinA)(1 + sinA)}{(1+cosA)(1-cosA)}\) ← expand numerator/denominator using FOIL
= \(\frac{1-sin^2A}{1-cos^2A}\)
= \(\frac{1-(1-cos^2A)}{1-(1-sin^2A)}\)
= \(\frac{1-1+cos^2A}{1-1+sin^2A}\)
= \(\frac{cos^2A}{sin^2A}\)
= cot²A = right side , thus proven
grace thought of a number, added 7, multiflied by 3, took away 5 and divided by 4 to give an answer of 7
Answer:
Step-by-step explanation:
To find the number that Grace thought:
We'll represent the unknown number as "x."
"Added 7": This can be represented as (x + 7).
"Multiplied by 3": This becomes 3 * (x + 7).
"Took away 5": This is represented as 3 * (x + 7) - 5.
"Divided by 4": This gives (3 * (x + 7) - 5) / 4.
"To give an answer of 7": The equation is (3 * (x + 7) - 5) / 4 = 7.
Now we can solve for x:
(3 * (x + 7) - 5) / 4 = 7
Multiply both sides by 4 to eliminate the denominator:
3 * (x + 7) - 5 = 28
Simplify the left side:
3x + 21 - 5 = 28
Combine like terms:
3x + 16 = 28
Subtract 16 from both sides:
3x = 12
Divide both sides by 3:
x = 4
Therefore, the number that Grace thought of is 4.
for every 15 Cheetos I ate 300 calories what's the unit rate
Answer:
20 calories per Cheetos
Step-by-step explanation:
hope it helped
a meayerologist at television station reported that a town received 0.90 inches of rain. Which fraction is equivalent to this amount of rain in inches?
Answer:
9/10
Step-by-step explanation:
0.90 = 0.9 = 90/100 = 9/10
If my answer is incorrect, pls correct me!
If you like my answer and explanation, mark me as brainliest!
-Chetan K
Help me please! Thank you so much.
Answer:
The answer is on the image.
Hope it helps!
Suraj took a slice of pizza from the freezer and put it in the oven. The pizza’s temperature (in degrees celsius) as a function of time (in minutes) is graphed. What was the pizza’s temperature after 2 minutes?
For this case, the first thing we should do is write the linear function that best suits the table.
In this case we have the following function:
y = 7.5x - 5
C = 7.5t-5
For C = 100 we have:
100 = 7.5t-5
We clear the time:
t = (100 + 5) / (7.5)
t = 14
Answer:
it did take the pizza to reach 100 degrees Celsius about 14 minutes
help me please!!
Use the drawing below to answer the questions that follow.
Part A: What is the scale factor going from smaller to larger?
Part B: What is the length of the missing side of the smaller rectangle?
the rectangle is 13.5cm width and 9cm length..
the rectangle we need to solve is 3cm width and ? as the length
Answer:
Imma say C...It makes the most sense!
Step-by-step explanation:
Have a good night!
These 3 congruent square pyramids can be assembled into a cube with side length 2 feet. How many cubic feet is the volume of each pyramid? your answer should be exact, not rounded.
The volume of each pyramid is exactly √3/6 cubic feet.
To find the volume of each pyramid, we need to first find the volume of the cube and then divide it by three. So, the volume of each pyramid is:
V = (1/3) Bh
We know that the base of each pyramid is a square with side length s, where s is half of the length of a side of the cube. So, s = 1 foot. Therefore, the area of the base of each pyramid is B = s² = 1² = 1 square foot.
To find the height of each pyramid, we need to use the Pythagorean theorem. Let's call this distance d. Then, using the Pythagorean theorem, we have:
d² + (1/2)² = s²
d² + 1/4 = 1
d² = 3/4
d = √(3)/2
Now that we know the height of each pyramid, we can calculate its volume:
V = (1/3) Bh = (1/3)(1)(√(3)/2) = √(3)/6 cubic feet
To know more about volume here.
https://brainly.com/question/11168779
#SPJ4
Xavier performs the elementary row operation represented by R1−1/2R2 on matrix A.
A=[ 4 3 0 ]
[-6 -3 12]
What matrix results from this transformation?
Enter your answer by filling in the boxes. Enter any fractions as simplified fractions.
Applying the given operation, the resulting matrix is given by:
\(\left[\begin{array}{ccc}7&\frac{9}{2}&-6\\-6&-3&12\end{array}\right]\)
Which operation is applied to the matrix, and what is the resulting matrix?The matrix given in this problem is:
A=[ 4 3 0 ]; [-6 -3 12] (; represents new row).
Hence:
Row 1(R1) is given by [4 3 0].Row 2(R2) is given by: [-6 -3 12].The operation is:
R1 -> R1 - 0.5R2
Meaning that row 2 is kept constant, while row 1 is changed according to the operation.
Then:
For the first column: 4 - 0.5(-6) = 4 + 3 = 7.For the second column: 3 - 0.5(-3) = 3 + 1.5 = 4.5 = 9/2.For the third column: 0 - 0.5(12) = 0 - 6 = -6.The resulting matrix is given by:
\(\left[\begin{array}{ccc}7&\frac{9}{2}&-6\\-6&-3&12\end{array}\right]\)
More can be learned about matrices at https://brainly.com/question/2456804
#SPJ1
expand 2x(3x+2y) thank you
Answer:
6x^2+4xy
Step-by-step explanation:
You distribute the 2x by multiplying it with each term
2x(3x)+ 2x(2y)
6x^2+4xy
hopes this helps please mark brainliest
Round 369 to the nearest ten. Enter your answer in the box below.
Answer:
370
Step-by-step explanation:
nearest ten would be 370
Answer:
370
Step-by-step explanation:
just round the 9 into a 10
if your looking for the square root of this rounded its 19.20 (sorry if that's not what you needed I was confused)
A formula to find the frequency, f, of a cyclic phenomena based on the period, T, is
f = . Solve the formula for T' in terms of f.
Step-by-step explanation:
The frequency and the time period is related by the formula as follows :
\(f=\dfrac{1}{T}\)
Here, f is frequency and T is time period
Now, we need to solve T in terms of f.
Firstly, cross multiplying the above equation,
\(f\times T=1\)
Now dividing both sides by T.
\(\dfrac{f\times T}{T}=\dfrac{1}{T}\\\\f=\dfrac{1}{T}\)
Hence, this is the required solution.
Answer:
T= 1/f
Step-by-step explanation:
T= one OVER f
Solve the equation for x: 3x + 4 = 9x − 1 by using a common base.