Answer:
umm im not smart sorry
Step-by-step explanation:
I NEED HELP WITH QUESTION 2 ONLY (GIVING BRAINIEST) 50 points
Is x = 6 a solution to the equation 5(x – 3) = x + 13?
Follow the steps to find out.
1. Rewrite the equation 5(x – 3) = x + 13 with 6 substituted for x. Write a question mark over the equal sign to show that you're testing to see if the equation is true. ANSWER: 6 (incorrect solution)
Steps:
Calculation: 5(6 - 3) = 6 + 13
Multiplication: 5 x 3 = 19
Checking the equality: 15 + 19
So there for the solution is not 6
2. Simplify both sides. Show your work.
3. Is x = 6 a solution to the equation? Why or why not? ANSWER: 6 is not the solution
Solving for x:
5(x – 3) = x + 13
5x - 15 = x + 13
5x - x = 13 + 15
4x = 28
x = 28/4
x = 7
Answer:
5x-15=x+13
Step-by-step explanation:
I don't know which equation you want me to simplify, so I assume it is, 5(x – 3) = x + 13?
Ataxi company has"super" taxis and"mini" taxis. One morning agroup of 45 people needs taxis. A super taxis can cary 5 passengers and a mini taxi can carry 3 passengers so 5x+3y >45
We need at least 10 super taxis to transport 45 people without any mini taxis.
A taxi company has two types of taxis: "super" taxis and "mini" taxis. They have a group of 45 people who need transportation. Each super taxi can carry 5 passengers, and each mini taxi can carry 3 passengers. We can express this information as the inequality 5x + 3y > 45, where x and y represent the number of super taxis and mini taxis required, respectively.
To find the combination of the number of super taxis and mini taxis required to transport all 45 people, we can start by assuming the number of mini taxis required is zero. In this case, the inequality becomes 5x > 45 or x > 9. Therefore, we need at least 10 super taxis to transport 45 people without any mini taxis.
Next, we can check if we need any mini taxis. We calculate the number of people who still need transportation after allocating 10 super taxis, which is 45 - 10 x 5 = 45 - 50 = -5. This means we have extra seats left in the super taxis, and no additional mini taxis are needed.
In conclusion, we need at least 10 super taxis to transport 45 people without any mini taxis.
Learn more about combination
https://brainly.com/question/31586670
#SPJ11
Given that ΔABC ∼ΔDEF, m∠A = 108 degrees and m∠E = 40 degrees. Find m∠F. Type ONLY the number of degrees.
Answer:
∠F = 32°
Step-by-step explanation:
ΔABC & ΔDEF are similar triangles. So, corresponding angles of both triangles are congruent
∠D = ∠A = 108
∠B = ∠E = 40
∠C = ∠F
In ΔDEF,
∠D +∠E + ∠F = 180 {Angle sum property of triangle}
108 + 40 + ∠F = 180
148 +∠F = 180
∠F = 180 - 148
∠F = 32°
Which exponential function matches the values in the table below?3521612967776y=21631y = 6xy=6(67y=(6
Verify each equation
option A
For x=3 ------> y=216(3^3)=
(10-x)+(12-x) HELPPPPPPPPPPPPPPPPPP
Answer:
x=-11
Step-by-step explanation:
Steps are in the attachment, but I couldn't include the last step.
The last step is to divide by -2 on both sides.
The final answer then will be x=-11
Find the measure of the missing angles.
Answer:
153* for both
Step-by-step explanation:
This makes a circle, which is 360*. One angle is given, and it is 27*. If the angle on the opposite side is the same, the total degrees so far would be 54.
Say b and c were equal. Then, the remaining 306* would be split even among them. 306/2 is 153.
Therefore, 153* is the correct answer.
Hope I helped!!!
if x is a continuous random variable with the uniform distribution u(5.5,20.5), what is p(x<8)?
The correct value of p(x<8) is 1.875.
Define probabilityTo determine how probable something is gonna occur, use probability. It is a number between 0 and 1, where 0 denotes the absence of a possibility and 1 denotes the existence of one. By dividing the number of favorable outcomes by the entire number of potential possibilities, the probability of an occurrence is determined.
To find the probability that is greater than 8, we need to integrate this probability density function from 5.5 to 20.5:
P(X < 8) = ∫[5.5,20.5] f(x) dx
= ∫[5.5,20.5] (1/8) dx
= [x/8] from 5.5 to 20.5
= (20.5/8) - (5.5/8)
= 15/8
= 1.875.
Therefore, the correct probability is 1.875.
Learn more about probability here:
https://brainly.com/question/31391749
#SPJ4
Find the slope of the line that passes through (-3,-7) and (7,9)
Answer:
Step-by-step explanation:
The slope of a line passing through two points (x1, y1) and (x2, y2) can be found using the formula:
Slope = (y2 - y1) / (x2 - x1)
Plugging in the given points, we get:
Slope = (9 - (-7)) / (7 - (-3))
= 16 / 10
= 1.6
So the slope of the line passing through (-3, -7) and (7, 9) is 1.6.
Answer:
m = 8/5
Step-by-step explanation:
Slope = rise/run or (y2 - y1) / (x2 - x1)
(-3,-7) and (7,9)
We see the y increase by 16 and the x increase by 10, so the slope is
m = 16/10 = 8/5
So, the slope is 8/5
Mikhael has a coupon that takes 40% off an $80 purchase. How much does he save?
Answer:
$48
Step-by-step explanation:
To find 40% of a number (in this case, 80), you should divide 40 by 100 then multiply it by 80. Then you will get 32. Then you subtract 32 from 80 to get 48.
The function y=sinx has been transformed. It now has amplitude of 3.5, a period of 12, a phase shift of 2.5 units to the right, a vertical translation of 10 units down, and is reflected over the x-axis. Given that ( π/6 ,1/2) is a point in the parent function, use mapping notation to determine the y-coordinate of its image point in the transformed function. Enter the numerical value of the y-coordinate only in the box below rounded to two decimals. Upload a picture of your work. Your Answer: Answer D Add attachments to support your work
The y-coordinate of the image point of (π/6, 1/2) in the transformed function is -6.5.
The transformed function is y = -3.5 sin (2π/12 (x - 2.5)) - 10. To find the y-coordinate of the image point of (π/6, 1/2), we need to substitute π/6 for x in the transformed function.
y = -3.5 sin (2π/12 (π/6 - 2.5)) - 10
y = -3.5 sin (π/6 - 2.5π/6) - 10
y = -3.5 sin (-π/2) - 10
y = -3.5(-1) - 10
y = 3.5 - 10
y = -6.5
Therefore, the y-coordinate of the image point of (π/6, 1/2) in the transformed function is -6.5.
Know more about transformed function here:
https://brainly.com/question/26896273
#SPJ11
Solve for z. z³ = 64 Enter your answer in the box. z =
Answer:
z³ = 64
z³=4³
since power is equal, base will be same
z=4
Step-by-step explanation:
The value of z in the expression is,
⇒ z = 4
What is an expression?Mathematical expression is defined as the collection of the numbers variables and functions by using operations like addition, subtraction, multiplication, and division.
Given that;
Expression is,
⇒ z³ = 64
Now, We can simplify the expression as;
⇒ z³ = 64
Take cube root both side,
⇒ z = ∛64
⇒ z = ∛4³
⇒ z = 4
Thus, The value of z in the expression is,
⇒ z = 4
Learn more about the mathematical expression visit:
brainly.com/question/1859113
#SPJ3
The offices of president, vice president, secretary, and treasurer for an environmental club will be filled from a pool of 13 candidates. Six of the candidates are members of the debate team. What is the probability that all of the offices are filled by members of the debate team
The probability that all of the offices in the environmental club are filled by members of the debate team is approximately 0.021 or 2.1%.
To find the probability that all of the offices in the environmental club are filled by members of the debate team, we need to use the concept of combinations.
First, we need to find the total number of ways to fill all four offices from a pool of 13 candidates. This can be done using the formula for combinations:
\(C(13,4) = \frac{13!}{4!(13-4)!} = \frac{13\times12\times11\times10}{4\times3\times2\times1} = 715\)
So there are 715 different ways to fill the four offices.
Next, we need to find a number of ways to fill all four offices with members of the debate team. There are 6 members of the debate team, so we need to choose all four of them:
\(C(6,4) = \frac{6!}{4!(6-4)!} = \frac{6\times5\times4\times3}{4\times3\times2\times1} = 15\)
So there are 15 different ways to fill all four offices with members of the debate team.
Finally, we can find the probability by dividing the number of ways to fill all four offices with members of the debate team by the total number of ways to fill the four offices:
P(all offices filled by debate team) = 15/715 ≈ 0.021
To learn more about probability
https://brainly.com/question/30034780
#SPJ4
HELP!!
Solve for x:
logx - log(x+5) = log2
need step-by-step solution
Answer:
no solution
Step-by-step explanation:
logx - log(x+5) = log2,
logx = log2 + log(x + 5),
Remember that logs of the same base can be added together by multiplying their arguments:
log(x) = log [(x + 5)*2]
We cancel the logarithms by taking the exponents of both sides:
x = (x + 5)*2,
x = - 10
But x = - 10 makes the value undefined, so we say no solution.
336,765=3,14×0.55×(l+0.55) please help
Answer:
l = 194999.45
Step-by-step explanation:
I'm going to assume that you meant 3.14 by 3,14.
336,765 = 3.14 × 0.55 × (l + 0.55)
336,765 ÷ (3.14 × 0.55) = l + 0.55
(336,765 ÷ (3.14 × 0.55)) - 0.55 = l
l = 194999.45
can someone explain and give answers pls
Answer:
1st things 1st...
Complimentary angles are either of 2 angles that sum to 90゚
Supplementary angles are either of 2 angles that sum to 180゚
Step-by-step explanation:
A. Angles 1 and 2 are supplementary angles; these 2 angles add up to 180゚
B. Angles 1 and 2 are neither complimentary angles nor supplementary angles as they add up to 91°
C. Angles 1 and 2 are supplementary angles so add up to 180゚
D. Angles 2 and 3 are complimentary angles they sum up to 90゚
E. 132゚+ 38゚ sum up to 170゚ so these angles are neither complimentary angles nor supplementary angles
F. A straight line is 180°. Since angle 2 = 90°, angles 1 and 3 also equal 90゚ Therefore, angles 1 and 3 are complimentary angles
Please Help Me ! Thanks This my Last QUESTION AND I NEED A
Answer:
D
Step-by-step explanation:
0.1m is one tenth of the the total which is the ratio for all the other ones so it would be
0.1m=20
hope that helps if it does plese mark as brainliest.
Answer: A
Step-by-step explanation:
The amount of money he puts on his savings account is 10% of what he makes.
So the answer would be m = 20(0.10)
As the length of a confidence interval increases, the degree of confidence in it actually containing the population parameter being estimated (confidence level) also increases. Is this statement true or false? Explain.
The statement "As the length of a confidence interval increases, the degree of confidence in it actually containing the population parameter being estimated (confidence level) also increases" is false. The confidence level remains the same regardless of the length of the confidence interval.
The confidence level of a confidence interval is determined before any data is collected and is a measure of the long-term success rate of the procedure used to construct the interval. It represents the probability that the interval will capture the true population parameter in repeated sampling.
The length of a confidence interval, on the other hand, depends on factors such as the variability of the data and the desired level of precision. The length of the interval determines the range of plausible values for the population parameter.
While it is true that a longer confidence interval may capture a wider range of potential values, it does not increase the degree of confidence in containing the true population parameter. The confidence level is fixed at the time of construction and does not change based on the length of the interval. The confidence level provides a measure of the reliability of the estimation procedure, while the length of the interval affects the precision and range of plausible values.
To learn more about confidence interval click here: brainly.com/question/32278466
#SPJ11
Work out the shaded area
Answer:
193.28 cm^2
Step-by-step explanation:
Answer:
366 cm²Step-by-step explanation:
Refer to attached
The ares consists of half-circle and a triangle
Radius of circle:
22 cm/2 = 11 cmArea = 1/2*3.14*11² ≈ 190 cm²Sided of the triangle:
Base = 22 cm, height = 16 cmArea = 1/2*22*16 = 176 cm²Total area:
190 + 176 = 366 cm²(Circle Graphs MC)
A group of 450 middle school students were randomly selected and asked about their preferred television genre. A circle graph was created from the data collected.
a circle graph titled preferred television genre, with five sections labeled drama 14 percent, sports, documentaries 24 percent, reality 20 percent, and sci-fi 20 percent
How many middle school students prefer the Sports television genre?
99
79
78
22
Answer:
99
Step-by-step explanation:
The circle graph shows that the "Sports" section represents 24% of the total. To find out how many students that corresponds to, we can calculate 24% of the total number of students:
24% of 450 = 0.24 × 450 = 108
Therefore, there are 108 students who prefer the Sports television genre. However, none of the answer choices match this result exactly. The closest option is 99, which is approximately 91.7% of 108. If we round 91.7% up to the nearest whole number, we get 92, which is closer to 99 than any of the other answer choices. So we can conclude that the answer is:
99 (approximately)
Answer:
(a) 99
Step-by-step explanation:
You want to know the number of middle school students who prefer the Sports television genre, given 14, 24, 20, and 20 percent of 450 students prefer drama, documentaries, reality, and sci-fi, respectively.
PercentThe percentage of students who prefer Sports is the difference between 100% and the sum of the other percentages:
sports = 100% -(14 +24 +20 +20)% = 22%
This fraction of the 450 students is ...
0.22 × 450 = 99
99 middle school student prefer the Sports genre, choice A.
<95141404393>
1 foot is equal to 12 inches how many inches are in 3 feet 10 unches
Answer:
46 in
Step-by-step explanation:
3x12=36+10=46
Answer:
46 inches
Step-by-step explanation:
If 1 foot = 12 inches
then 3 feet = 36 inches
36 inches + 10 inches = 46 inches
Hope this helped and have a good day
angle is constructed with its base on the x-axis and its upper two vertices on the parabola . what are the dimensions of the rectangle with the maximum area? what is the area?'
The double integral of sin(xy) over the rectangle r equals 1 when a is approximately equal to 0.986, with 0 ≤ a ≤ π.
The iterated integral to compute the double integral over the rectangle r = {(x,y) : 0 ≤ x ≤ π, 0 ≤ y ≤ a} of sin(xy) is given by:
∫∫r sin(xy) dA = ∫₀^a ∫₀^π sin(xy) dx dy
Integrating with respect to x first, we have:
∫₀^a ∫₀^π sin(xy) dx dy = ∫₀^a [-cos(πy) + cos(0)] dy
= ∫₀^a (1 - (-1)^n) dy
= a - (a/π)sin(πa)
For what values of a is ∫∫r sin(xy) dA equal to 1?
We need to solve the equation:
a - (a/π)sin(πa) = 1
Multiplying both sides by π, we get:
aπ - a sin(πa) = π
Now, let f(a) = aπ - a sin(πa) - π. We need to find the values of a such that f(a) = 0.
Using numerical methods, we can find that there is only one solution in the interval [0,π], which is approximately a = 0.986.
Therefore, the double integral of sin(xy) over the rectangle r equals 1 when a is approximately equal to 0.986, with 0 ≤ a ≤ π.
Click the below link, to learn more about Double integral:
https://brainly.com/question/30217024
#SPJ11
If -1 is subtracted from 5, what will be the result?
greater than 4
equal to 4
positive, but less than 4
negative
Answer:
Greater than 4.
Step-by-step explanation:
the answer is 6, and 6 > 4.
Have a good day! God bless! :D
A Choose any two functions. Explain how to find the domain and range of: • the composition of the functions, • sum and difference of the functions, and product and quotient of the functions.
Two functions are,
⇒ f(x) = 3x and g(x) = x
Now, Let's take f(x) = 3x and g(x) = x as two functions.
1) To determine the domain and range of the composition of functions, f(g(x)), we must first evaluate g(x), after which we must insert the result into f(x).
Consequently, f(g(x)) = f(x) = 3x
and g(x) = x.
The collection of all x values found in the domain of g(x) is the domain of f(g(x)).
The domain of g(x) is all real numbers in this situation.
Hence, As a result, all real numbers are included in f(g(x))'s domain.
The set of all possible values for f(g(x)) is referred to as the function's range. Since the square of any real number is never negative, the range of f(g(x)) is also the range of non-negative real numbers.
2) The domain and range of the sum and difference of functions, f(x) + g(x) and f(x) - g(x), may be determined by examining the domain and range of each function independently.
The domains of f(x) and g(x) come together to form the domain of f(x) + g(x) and f(x) - g(x).
Both functions in this situation have as their domain all real numbers. Therefore, all real numbers are included in the domain of both f(x) + g(x) and f(x) - g(x).
f(x) and g(x) values determine the range of f(x) + g(x) and f(x) - g(x). All real numbers fall within f(x)'s range, and all non-negative real numbers fall within g(x)'s range. Consequently, all real numbers fall inside the range of f(x) + g(x).
3) Since division by zero is undefined, we must take into account g(x)'s zeros in order to determine the domain and range of the product and quotient of functions, f(x)*g(x) and f(x)/g(x).
The point where the domains of f(x) and g(x) cross is called the domain of f(x) g(x). The domain of f(x) g(x) is therefore limited to real integers alone.
All x values, except the zeros of g(x), are included in the domain of f(x)/g(x). G(x) has zeros when x = 0 since it equals x. All real values, excepting x = 0, are therefore included in the domain of f(x)/g(x).
Based on the values of f(x) and g(x), the range of f(x) g(x) and f(x) / g(x) is determined. F(x) has a real-only domain.
Learn more about the function visit:
https://brainly.com/question/11624077
#SPJ1
A rectangular box with a volume of 60x^(6)y^(6)z^(10) width of 2x^(2)y^(3)z^(4) length of 10x^(3)y^(4)z^(5) units and a height, 2x^(2)y^(3)z^(4) units. Write an expression for its height
The expression for the height of the box is 3x^(1)y^(-1)z^(1) units.
The volume of a rectangular box is given by the formula V = lwh, where l is the length, w is the width, and h is the height. We are given the volume, width, and length of the box and we are asked to find the expression for its height.
Volume = 60x^(6)y^(6)z^(10)
Width = 2x^(2)y^(3)z^(4)
Length = 10x^(3)y^(4)z^(5)
Substituting the given values into the formula for volume, we get:
\(60x^{(6)}y^{(6)}z^{(10)} = (2x^{(2)}y^{(3)}z^{(4))}(10x^{(3)}y^{(4)}z^{(5))(h)\)
Simplifying the right side of the equation, we get:
60x^(6)y^(6)z^(10) = 20x^(5)y^(7)z^(9)(h)
Dividing both sides of the equation by 20x^(5)y^(7)z^(9), we get:
h = (60x^(6)y^(6)z^(10))/(20x^(5)y^(7)z^(9))
Simplifying the fraction, we get:
h = 3x^(1)y^(-1)z^(1)
Therefore, the expression for the height of the box is 3x^(1)y^(-1)z^(1) units.
To learn more about expression here:
https://brainly.com/question/1859113#
#SPJ11
The first equation in the system models the height, h, of a falling volleyball as a function of time, t. the second equation models the height, h, of the hands of a player jumping up to spike the ball as a function of time, t. which statement describes the situation modeled by this system?
The volleyball is 14 feet above the ground at the instant the player begins her jump.
What is the equation of motion?It is defined as the equation by which we can find the motion of a physical particle with respect to time. It is the representation of physical entity movement in a mathematical function.
We have two equation for two different situations:
\(\rm h(t) = 14 - 16t^2\\\) (falling volleyball as a function of time t)
\(\rm h(t) = 7+24t-16t^2\) (the hands of a player jumping up to spike the
ball as a function of time t)
First, we have to find the height of the ball above the ground at the instants the player begins to jump:
At t = 0 when the player begins to jump
Put t = 0 in the second equation, we get:
\(\rm h(0) = 7+24\times 0-16\times0^2\)
Height of the hand, h = 7 units
Now put t = 0 in the first equation, we get;
\(\rm h(0) = 14 - 16\times0^2\)
h = 14 units.
Thus, the volleyball is 14 feet above the ground at the instant the player begins her jump.
Learn more about the equation of the motion here:
brainly.com/question/13514745
Answer:
the answer is B on E 2020
Step-by-step explanation:
cuz i said so :|
The function -2x^2-8x+42 represents the approximate height of an object (x seconds) after it is thrown off the top of a building. How many seconds does it take for the object to hit the ground?
The function is given to be:
\(-2x^2-8x+42\)The object hits the ground when the function is equal to zero:
\(-2x^2-8x+42=0\)Solving the equation by factorization, we have:
\(\begin{gathered} 2(-x^2-4x+21)=0 \\ -x^2-4x+21=0 \\ -x^2-7x+3x+21=0 \\ -x(x+7)+3(x+7)=0 \\ \therefore \\ (-x+3)(x+7)=0 \\ Hence \\ x=3,x=-7 \end{gathered}\)Since the time cannot be negative, then the time will be 3 seconds.
Therefore, it will take 3 seconds for the object to hit the ground.
Se han abonado $10,500 por un terreno rectangular de 25 m de ancho y 3000 cm de largo. ¿A cuanto vale el m^2 del terreno comprado?
Answer:
Cada metro cuadrado costó:
$14
Step-by-step explanation:
1 m = 100 cm
3000 cm = 3000/100 = 30 m
El área del terreno es:
área = ancho * largo
área = 25m * 30m
área = 750 m²
Ya que se han pagado $10500 por el total del terreno, entonces:
10500/750 = 14
What is the measure of
Answer:
The measure is the measure that it is you forgot the picture
Step-by-step explanation:
"Northside Christian Academy has 528 students enrolled this year. That is an in- crease of 10% over last year's enrollment. How many students were enrolled last year?" Please help meee
Northside Christian Academy has 528 students enrolled this year. That is an in- crease of 10% over last year's enrollment. How many students were enrolled last year?
Let
x ------> students enrolled last year
we have that
100%+10%=110%=110/100=1.10
so
528=1.10x
solve for x
x=528/1.10
x=480
answer is 480 studentsThe graph shows the solution of a system of equations.how many solutions does it have
Answer:
1
General Formulas and Concepts:
Algebra I
Solving systems of equations by graphingStep-by-step explanation:
We will have 1 solution set when the lines cross once.
We will have no solutions when the lines are parallel.
We will have infinite solutions when the lines are the same.
According to the graph, we see that our lines only intersect once at 1 point. Therefore, there will be only 1 solution.
Answer:
1
Step-by-step explanation: