A photographer is placing 7 people in a single line for a group picture. How
many ways are there to arrange the people?
Answer:
49
Step-by-step explanation:
There is 7 different places each of the 7 people can stand. So you would do 7×7 which equals 49.
Use the figure below to fill in the blanks :)
Answer:
a: 2 cm; b: 34 cm; c: 46 cm^2
Step-by-step explanation:
the missing side length is 2
9 - (4 + 3) = 2
when you add them all together you get
5 + 4 + 2 + 2 + 3 + 3 + 6 + 9 = 34
the perimeter is 34
you can split the shape up in multiple ways
you can split it into three rectangles
(5 * 4) + (2 * 4) + (3 * 6)
20 + 8 + 18 = 46
Answer:
a) 2 cm
b) 34 cm
c) 44 cm²
Step-by-step explanation:
a) 9 cm - 4 cm - 3 cm = 2 cm
b) 9 cm + 5 cm + 4 cm + 2 cm + 2 cm + 3 cm + 3 cm + 6 cm = 34 cm
c) 5 cm × 4 cm + 2 cm × 3 cm + 3 cm × 6 cm = 44 cm²
suppose that b is a 5 cross times 5 matrix with three eigenvalues. one eigenvalue has a three dimensional eigenspace. which of the following statements are correct?
There are two correct statements regarding a 5 by 5 matrix with three eigenvalues, one of which has a three-dimensional eigenspace.
First, there must be at least two linearly independent eigenvectors associated with the eigenvalue that has a three-dimensional eigenspace. Second, the sum of the dimensions of the eigenspaces must be equal to the size of the matrix, which is 5 in this case.
To understand the first statement, recall that the dimension of an eigenspace is equal to the multiplicity of the associated eigenvalue, which is the number of times it appears as a root of the characteristic equation. Since one of the eigenvalues has a three-dimensional eigenspace, its multiplicity must be at least 3. This means there are at least 3 linearly independent eigenvectors associated with this eigenvalue, which is necessary to span a three-dimensional space. However, the sum of the multiplicities of all eigenvalues cannot exceed the size of the matrix, which is 5. Therefore, the remaining two eigenvalues must have a combined multiplicity of 2 at most, which implies that there are at most 2 linearly independent eigenvectors associated with each of them.
To understand the second statement, note that the sum of the dimensions of the eigenspaces is equal to the sum of the multiplicities of all eigenvalues. This follows from the fact that the eigenspaces associated with distinct eigenvalues are linearly independent. Since there are three distinct eigenvalues in this case, the sum of their multiplicities is at most 5, which means the sum of the dimensions of their eigenspaces is also at most 5. Since one of the eigenspaces has dimension 3, the sum of the dimensions of the other two eigenspaces must be at least 2, which means each of them has at least one linearly independent eigenvector.
To learn more about eigenvalues, click here:
brainly.com/question/29861415
#SPJ11
Is a type of quantitative analysis in which the amount of a species in a material is determined by converting the species to a product that can be isolated completely and weighed.
A type of quantitative analysis in which the amount of a species in a material is determined by converting the species to a product that can be isolated completely and weighed is "gravimetric analysis."
What is gravimetric analysis?Gravimetric analysis is a quantitative chemical analysis method in which the contribution sought is transformed into a material (of different compositions) that can be separated and weighed from the sample.
Some key features regarding the gravimetric analysis are-
Gravimetric analysis typically involves the following steps: preparation of a solution containing the known weight of sample, separation of a required constituent, weighing the isolated constituent, and computation of exact amount of a particular constituent with in sample from a estimated weight of a isolated substance.The most common method for isolating the preferred constituent from a sample solution is precipitation—that is, transition into a substance that is not soluble in the solution. A reagent is added, which constitutes an insoluble compound only with desired constituent but does not precipitate the sample's other constituents. Filtration is used to separate the precipitate, which is then washed to remove soluble impurities, dried and ignited to drain water, and weighed. Certain substances, such as carbonate in a mineral analysis, can be separated due to their easy conversion into gaseous compounds.To know more about the gravimetric analysis, here
https://brainly.com/question/1571553
#SPJ4
Simplify the expression.
(5x + 1/2) + (3x - 7 1/2)
Answer:
8x - 7
Step-by-step explanation:
Answer:
=8x−35
Step-by-step explanation:
=5x+1/2+3x+−71/2
Combine Like Terms:
=5x+1/2+3x+−71/2
=(5x+3x)+(1/2+−71/2)
=8x+−35
Find the general solution of the following ODE d²x dx 8-3e²t dt² dt Select all the correct answers. The general solution of the given non-homogeneous ODE is 3 x(t) = Xh(t) + Xp(t): -te²t + (−4t) + A + Be2t, where A and B are a 2 The homogeneous counterpart of the given non-homogenous ODE is d²x dt² dx 2: = 0 dt The general solution of the homogeneous counterpart of the given non-homogenous ODE is Xh(t) = A + Be²t where A and B are arbitrary constants. The general solution of the homogeneous counterpart of the given non-homogenous ODE is Xh(t) = Aet + Be2t where A and B are arbitrary constants. A valid trial function for the given non-homogeneous ODE is Xp(t) = Pte²t + Q where P, Q are coefficients to be determined. The characteristic equation (CE) of the homogeneous counterpart of the given non-homogenous ODE m² 2m + 1 = 0 2. = The general solution of the given non-homogeneous ODE is x(t) = x₁(t) + xp(t) = − e²¹ − 4 + A + Be²t, where A and B are arbitrary c A valid trial function for the given non-homogeneous ODE is Xp(t) = Pe²t + Q where P and Q are coefficients to be determined. The general solution of the homogeneous counterpart of the given non-homogenous ODE is Xh(t) = At + Bte where A and B are arbitrary constants. A valid trial function for the given non-homogeneous ODE is Xp(t) Pte²t + Qt where P and Q are coefficients to be determined. The characteristic equation (CE) of the homogeneous counterpart of the given non-homogenous ODE is m² - 2m - = 0 The general solution of the given non-homogeneous ODE is x(t) = x₁(t) + Xp(t)= = -te²t - 4+ A + Be²t, where A and B are arbitrary A valid trial function for the given non-homogeneous ODE is Xp(t) = Pe²t + Qt + R where P, Q, and R are coefficients to be determined The characteristic equation (CE) of the homogeneous counterpart of the given non-homogenous ODE is 0 m² + 2m
The general solution of the homogeneous counterpart is:
Xh(t) = \(Ae^{(4t)} + Be^{(-t)}\)
The values of P and Q are:
P = 1/2
Q = Arbitrary constant
The general solution of the given non-homogeneous ODE is:
\(Ae^{(4t)} + Be^{(-t)} + (1/2)t*e^{(2t)} + Q\)
Where A, B, and Q are arbitrary constants.
To find the general solution of the given non-homogeneous ODE:
d²x/dt² - 8dx/dt + 3e²t = 0
We need to find the solutions to the homogeneous counterpart first:
The characteristic equation (CE) of the homogeneous counterpart is:
m² - 8m + 3e²t = 0
Simplifying the characteristic equation:
m² - 8m + 3 = 0
Using the quadratic formula, we find the roots:
m = (8 ± √(8² - 4(1)(3))) / (2(1))
m = (8 ± √(64 - 12)) / 2
m = (8 ± √52) / 2
m = (8 ± 2√13) / 2
m = 4 ± √13
Therefore, the general solution of the homogeneous counterpart is:
Xh(t) = \(Ae^{(4t)} + Be^{(-t)}\)
Next, we need to find a valid trial function for the non-homogeneous part. Since \(e^{(2t)\) is already present in the non-homogeneous term, we can use t*\(e^{(2t)\) as a trial function:
Xp(t) = Pt*\(e^{(2t)\) + Q
Now, we can substitute the trial function and its derivatives into the original ODE and solve for the coefficients P and Q. Differentiating the trial function:
Xp'(t) = P\(e^{(2t)\) + 2Pt\(e^{(2t)\)
Xp''(t) = 2P\(e^{(2t)\) + 4Pt\(e^{(2t)\)
Substituting these derivatives into the original ODE:
2P\(e^{(2t)\) + 4Pt\(e^{(2t)\) - 8(P\(e^{(2t)\) + 2Pte^(2t)) + 3\(e^{(2t)\) = 0
Simplifying and collecting like terms:
(2P - 8P + 3)\(e^{(2t)\) + (4P - 16Pt)\(e^{(2t)\) = 0
Comparing the coefficients of \(e^{(2t)\) and the constant term, we get:
2P - 8P + 3 = 0 -> -6P + 3 = 0 -> P = 1/2
4P - 16Pt = 0 -> 4P - 16(1/2)t = 0 -> 4 - 8t = 0 -> t = 1/2
Therefore, the values of P and Q are:
P = 1/2
Q = Arbitrary constant
The particular solution is:
Xp(t) = \((1/2)t*e^{(2t)} + Q\)
Finally, the general solution of the given non-homogeneous ODE is:
x(t) = Xh(t) + Xp(t)
= \(Ae^{(4t)} + Be^{(-t)} + (1/2)t*e^{(2t)} + Q\)
Where A, B, and Q are arbitrary constants.
Learn more about Arbitrary Constants at
brainly.com/question/29093928
#SPJ4
Consider the O-ring Model. Suppose we have 2 types of workers: H-type (with q=0.6) and L-type (with q=0.4). If there are 6 workers, 3 of each type, based on the O-ring model, how should we allocate these workers to get the maximum output? {HLH,LHL} {HLL,LHH} {HHH,LLL} all of the above
We should allocate the workers as follows: {HLH,LHL} {HLL,LHH} {HHH,LLL} to get the maximum output.
The O-ring model states that production output depends on the quality of each worker. The quality of the final product is determined by the lowest quality worker working on the project.
In the given case, we have two types of workers: H-type and L-type.
The H-type workers have a quality of q=0.6, and the L-type workers have a quality of q=0.4.
We are to determine how to allocate the workers to get the maximum output.
The answer is all of the above.{HLH,LHL} {HLL,LHH} {HHH,LLL} is the allocation we need to get maximum output.
Here's how we arrive at the solution:
For the O-ring model, we need to group the workers in a way that minimizes the number of low-quality workers in a group.
We can have two possible groupings as follows:
{HLH,LHL} - This group has a minimum q of 0.4, which is the quality of the L-type worker in the middle of the group.
{HLL,LHH} - This group also has a minimum q of 0.4, which is the quality of the L-type worker on the left of the group.
The other grouping, {HHH,LLL}, has all low-quality workers in one group and all high-quality workers in another group. This is not ideal for the O-ring model as the low-quality workers will negatively affect the output of the high-quality workers.
Thus, to get the maximum output, we should allocate the workers as follows:
{HLH,LHL} {HLL,LHH} {HHH,LLL} all of the above
To learn more about O-ring model
https://brainly.com/question/32938866
#SPJ11
34x+95=3(14x+9) what is the answer
34x+95=3(14x+9)
We move all terms to the left:
34x+95-(3(14x+9))=0
We calculate terms in parentheses: -(3(14x+9)), so:
3(14x+9)
We multiply parentheses
42x+27
Back to the equation:
-(42x+27)
We get rid of parentheses
34x-42x-27+95=0
We add all the numbers together, and all the variables
-8x+68=0
We move all terms containing x to the left, all other terms to the right
-8x=-68
x=-68/-8
x=8+1/2
What is the surface area, in square millimeters, of the cylinder that is represented by the net? Express your
answer in terms of . The formula for area of a circle is A = r2 and for area of a rectangle is A = bh.
*LOOK AT PHOTO*
given =− and =6, find the following derivatives as functions of t.
dy/dx = (3te^(3t)+e^(3t)/-e^(-t)
d2y/dx2 = ((9t+6)e^(-6t))
To find the derivatives of y with respect to t, we'll use the chain rule and the product rule.
y = -e^(-t) + 6
First, let's find dy/dt:
dy/dt = d/dt (-e^(-t) + 6)
= -d/dt(e^(-t)) + 0 [since the derivative of a constant is zero]
= e^(-t)
Next, let's find d^2y/dt^2 (the second derivative of y with respect to t):
d^2y/dt^2 = d/dt(dy/dt)
= d/dt(e^(-t))
= -e^(-t)
Therefore, the derivatives as functions of t are:
dy/dt = e^(-t)
d^2y/dt^2 = -e^(-t)
Note: It seems there might be a typo in the given expression for dy/dx, as the original function y is expressed in terms of t. If there was an error or if you intended to find the derivatives with respect to a different variable, please provide the correct equation for y in terms of x, and I'll be happy to help further.
Learn more about derivatives here
https://brainly.com/question/23819325
#SPJ11
How has the creation of the nation-state of israel increased pan-arabism? question 20 options: it showed that there needs to be an arabic home land, too. it unites many different arabic cultures against a common enemy, the jews. it justifies the jewish need for more space and why they spread into the sinai peninsula. after the massive loss of the yom kippur wars, israelis and palestinians were united as one
Among the provided options, the most accurate statement would be: "It unites many different Arabic cultures against a common enemy, the Jews."
The creation of the nation-state of Israel in 1948 led to increased Pan-Arabism in several ways. Firstly, the establishment of Israel as a Jewish state in the heart of the Arab world was perceived by many Arabs as a direct threat to their own national aspirations. This common enemy, the Jews, served as a rallying point that united various Arabic cultures against a perceived external threat.
Additionally, the existence of Israel became a central issue for Arab nationalism, with the goal of liberating Palestine from Israeli control becoming a unifying cause among Arab nations. The Arab-Israeli conflict and ongoing tensions between Israel and its Arab neighbors further fueled Pan-Arab sentiment.
It is important to note that the other options provided do not accurately reflect the impact of Israel's creation on Pan-Arabism. The creation of Israel did not justify Jewish expansion into the Sinai Peninsula, nor did it lead to Israeli-Palestinian unity after the Yom Kippur Wars.
The statement that it demonstrated the need for an Arabic homeland is also not accurate, as the creation of Israel was not a direct factor in the Arab world's pursuit of national self-determination.
To learn more about Pan-Arabism visit:
brainly.com/question/30825310
#SPJ11
Please help me hurry a lot of points
Answer:
The radius of mercury is 6 times larger than the radius of hydrogen and the radius of uranium is 7 times larger than the radius of hydrogen.
Step-by-step explanation:
For mercury,
\(Ratio=\frac{radius of Hg}{radius of H} \\=\frac{1.5e-10}{2.5e-11} \\=6\)
For uranium,
\(Ratio=\frac{radius of U}{radius of H} \\=\frac{1.75e-10}{2.5e-11} \\=7\)
the chart gives prices and output information for the country of new zealand. use this information to calculate real and nominal gdp for both years. use 2017 as the base year.
The nominal GDP for the year 2017 is $87,000, and the real GDP for the year 2017 is $87,000.
How to calculate real and nominal GDP?Using a base year,the formula to calculate the Real GDP is given below:
Real GDP = Nominal GDP ÷ Deflator (in decimal)
Where, Deflator = (Price of base year goods and services ÷ Price of current year goods and services) × 100
Nominal GDP for the year 2017= 1,650 × 10 + 2,820 × 25= 16,500 + 70,500= 87,000
Nominal GDP for the year 2019= 1,900 × 12 + 3,250 × 27= 22,800 + 87,750= 110,550 Using the above formula,
Deflator for the year 2017 can be calculated as:
Deflator for 2017= (P2017 / P2017) × 100= (1 × 10 + 2 × 25) / (1 × 10 + 2 × 25) × 100= 100
Similarly, Deflator for the year 2019 can be calculated as:
Deflator for 2019= (P2019 / P2017) × 100= (1.10 × 12 + 2.75 × 27) / (1 × 10 + 2 × 25) × 100= 120.25
Now, Real GDP for the year 2017= 87,000 / 100= $87,000 Real GDP for the year 2019= 110,550 / 120.25= $917.54 million.
Thus, the nominal GDP for the year 2017 is $87,000, and the real GDP for the year 2017 is $87,000. The nominal GDP for the year 2019 is $110,550, and the real GDP for the year 2019 is $917.54 million.
Learn more about real and nominal GDP
brainly.com/question/15171681
#SPJ11
Brian rolls a fair dice and flips a fair coin.
What is the probability of obtaining a 2 and a head?
Give your answer in its simplest form.
Answer:
1/12
Step-by-step explanation:
1)Since it is a fair dice the probability of getting a 2 is 1/6 since there are 6 sides in a dice.
2)In a coin there are only 2 possible outcomes, which are heads and tails so the probability of getting heads is 1/2.
3)To get the probability of rolling a fair dice and getting 2 with also getting heads from a fair coin you multiply both probabilties. So you do 1/6 x 1/2 = 1/12.
Thanks for reading, please let me know if i have missed out anything!
solve the equation
48= y + 5y
48=y+5y
pretend that there is a 1 in front for the y
48=1y+5y
add the like terms first
1y+5y=6y
48=6y
divide both sides by 6 to get y by itself
48/6=6y/6
8=y
answer:
y=8
Answer:
y = 8
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDASEquality PropertiesStep-by-step explanation:
Step 1: Define equation
48 = y + 5y
Step 2: Solve for y
Combine like terms: 48 = 6yDivide 6 on both sides: 8 = yRewrite: y = 8Step 3: Check
Plug in y into the original equation to verify it is a solution.
Substitute in y: 48 = 8 + 5(8)Multiply: 48 = 8 + 40Add: 48 = 48Here we see that 48 does indeed equal 48.
∴ y = 8 is a solution of the equation.
Tony needs one gallon of orange juice to make punch for a party. Gallons of orange juice cost $3.99 each. Quarts of orange juice
cost $1.25 each. Pints of orange juice cost $0.65 each. Cups of orange juice cost $0.20 each. Which of these is the best buy for a
gallon?
A-the cups
B-the pints
C-the quarts
D-the gallon
Answer
C because 2 quarts make's one gallon
Step-by-step explanation:
Find the mean, the median, and the mode of each data set.
0 0 1 1 2 3 3 5 3 8 7
Answer:
mean is 3 median is 3 and mode is also 3
Step-by-step explanation:
brainliest helps
help, please for 20 points
9514 1404 393
Answer:
salt, super clean, pepper, washing powder
44oz drink, popcorn, 32oz drink
Step-by-step explanation:
The number of ounces can be found by dividing the price by the price per ounce:
3.60/(0.30/oz) = 12 oz . . . salt
8.80/(0.11/oz) = 80 oz . . . super clean
6.72/(0.42/oz) = 16 oz . . . pepper
7.80/(0.13/oz) = 60 oz . . . washing powder
__
3.52/(0.08/oz) = 44 oz . . . 44oz drink
9.00/(0.18/oz) = 50 oz . . . popcorn
1.92/(0.06/oz) = 32 oz . . . 32oz drink
11. a rug measuring 20 square meters costs $132. how much would a 12 square-meter rug of the same material cost?
A 12 square-meter rug of the same material would cost $79.20.
To find out how much a 12 square-meter rug of the same material would cost, we can set up a proportion based on the area and cost relationship of the rugs.
Let's denote the cost of the 12 square-meter rug as 'x.'
We have the following proportion:
20 square meters : $132 = 12 square meters : x
To solve this proportion, we can cross-multiply:
20 square meters * x = 12 square meters * $132
20x = 12 * $132
20x = $1584
Now, we can solve for 'x' by dividing both sides of the equation by 20:
x = $1584 / 20
x = $79.20
Therefore, a 12 square-meter rug of the same material would cost $79.20.
for such more question on cost
https://brainly.com/question/25109150
#SPJ8
El perimetro de un rectangulo mide 166 cm . Si su base mide 58 cm ¿cuanto mide su altura y cual es su area
solución:
A=1450cm²
~~~~~~~~~~~~~
Pls help
With the second one
A and B and the triangle
Answer:
the new side lengths are 10.5 , 9 and 6 inches
the new triangle has the following sides: 5, 4, 3 inches
the perimeter of the first triangle is 36 inches
the perimeter of the second triangle is 12 inches
area of the first triangle is 54 inches squared
area of the second triangle is 6 inches squared
Step-by-step explanation:
first question:
sides are 7,6,4. multiply each one by 3/2 or 1.5
7 x 1.5 = 10.5 or 12/2
6 x 1.5 = 9
4 x 1.5 = 6
the new side lengths are 10.5 , 9 and 6 inches
second question:
multiply each side by 1/3
the sides are 15, 12, 9, so:
15 x 1/3= 5
12 x 1/3 = 4
9 x 1/3 = 3
the new triangle has the following sides: 5, 4, 3
normal sides are 3 and 4
hypotenuse is 5
question a: (calculate perimeter)
the perimeter of a triangle: you add all the sides
the first triangle has 15, 12, 9 for its sides so:
15+12+9 = 36
the perimeter of the first triangle is 36
the second triangle has 5,4,3 for its sides so:
5+4+3 = 12
the perimeter of the second triangle is 12
question b: (calculate the area of both triangles)
area of a triangle: h x b/2: height times base divided by 2
the first triangle has sides, 15,12,9
height is 9 and base is 12, so:
9 x 12/2 = 54 inches squared
area of the first triangle is 54 inches squared
the second triangle has sides, 5,4,3
height is 3 and base is 4, so:
3 x 4/2 = 6 inches squared
area of the second triangle is 6 inches squared
Determine the volume of the tin in cubic meter. Hint volume of the tin is determined by multiplying the area of the base by the height of the tin
The volume of the tin in cubic meter is equal to 785 cubic meter.
How to calculate the volume of a cylinder?Mathematically, the volume of a cylinder can be calculated by using this formula:
Volume of a cylinder, V = πr²h
Where:
V represents the volume of a cylinder.h represents the height of a cylinder.r represents the radius of a cylinder.Assuming the radius of the base is 5 cm and the height of this tin is 10 cm, the volume of the tin in cubic meter can be calculated as follows;
Volume of a cylinder, V = 3.14 × 5² × 10
Volume of a cylinder, V = 3.14 × 250
Volume of a cylinder, V = 785 cubic meter.
Read more on cylinder here: brainly.com/question/14060443
#SPJ1
Luis has an account at GESA Credit Union. He had a balance of $500.00 starting January 15th. He made deposits of $100, $250, and $300. He also made withdrawals of $400.32, $100, $55.55, and $62.62. What would be his ending balance after all the transactions?
SHOW THE WORK PLEASE
Answer:
the ending balance is $531.51
Step-by-step explanation:
The computation of the ending balance is shown below:
= Opening balance + all deposits - all withdrawls
= $500 + $100 + $250 + $300 - $400.32 - $100 - $55.55 - $62.62
= $531.51
hence, the ending balance is $531.51
HELP!!! DUE BY TOMORROW!!
1. The table below shows values for y=3(2*). What value will replace the question mark in the table?
2. By what factor are the y-values in the table increasing?
Answer: 1. 48 2. Times 2
Step-by-step explanation: 3 times 2 to the power of 4 is 48. Furthermore you can see the y axis values keep increasing times 2.
Our TA owns four Porsches, each works of the time, and two Ferraris, each works of the time. What is the probability that on a given day, at least half of the Porsches and at least half the Ferraris work
Based on the percentage of the time that the Porches and the Ferraris work, the probability that at least half of both work on a given day is 0.8172.
What is the probability that only half of the cars work?The Porches work 80% of the time and the Ferraris work 60% of the time.
Using the binomial distribution, the probability that half the Porches work is:
= (⁴ₓ) (0.80)ˣ (1 - 80)⁽⁴ ⁻ ˣ⁾
= 0.9728
The probability that half the Ferraris work is:
= (²ₓ) (0.60)ˣ (1 - 60)⁽² ⁻ ˣ⁾
= 0.84
The probability that only half of both will work is:
= 0.9728 x 0.84
= 0.8172
Find out more on binomial probability at
https://brainly.com/question/24756209.
#SPJ1
Four less than a number
Step-by-step explanation:
For writing the expression, represent 'a number' as x, as it's unknown.
The word format explains;
Four less than x.
Subtracting 4 from x will represent four less than x.
Expression is represented as;
\(x - 4\)
neeeeeed help i tried my best
Answer:
62Step-by-step explanation:
Here,
x + 118 = 180. [Since Supplementary Angle]
=> x = 180 - 118
=> x = 62 (Ans)
what is the equation of y=x^3 with the given transformations
Each transformation affects the shape and position of the graph. It is important to carefully consider the order of the transformations and their impact on the equation.
1. Horizontal Shift (c):
If there is a horizontal shift, the equation becomes y = (x - c)^3.
For example, if there is a shift of 2 units to the right, the equation would be y = (x - 2)^3.
2. Vertical Shift (d):
If there is a vertical shift, the equation becomes y = x^3 + d.
For example, if there is a shift of 3 units upwards, the equation would be y = x^3 + 3.
3. Vertical Stretch (a):
If there is a vertical stretch or compression, the equation becomes y = a * x^3.
For example, if there is a vertical stretch by a factor of 2, the equation would be y = 2 * x^3.
4. Reflection (along the x-axis):
If there is a reflection along the x-axis, the equation becomes y = -x^3.
This flips the graph of the original function upside down.
5. Reflection (along the y-axis):
If there is a reflection along the y-axis, the equation becomes y = (-x)^3.
This mirrors the graph of the original function.
6. Combined Transformations:
If there are multiple transformations, we can apply them in the order they are given. For example, if there is a vertical stretch by a factor of 2 and a horizontal shift of 3 units to the right, the equation would be y = 2 * (x - 3)^3.
Remember, each transformation affects the shape and position of the graph. It is important to carefully consider the order of the transformations and their impact on the equation.
To know more about equation here:
brainly.com/question/29292690
#SPJ11
Fully simplify 7hw+5wh + 3hw
Answer:
15hw.
Step-by-step explanation:
Note 5wh is the same as 5hw, so we have:
7hw+5hw + 3hw
= 15hw.
Or, if you like, you could write it as 15wh.
Graph the function f(x)=[[−x]]. (This is a Greatest Integer Function, NOT absolute value) Then state the domain and range in interval notation.
A graph of the function f(x) = [-x] is shown in the image below.
The domain and range in interval notation are;
Domain = [-∞, ∞].
Range = [-∞, ∞].
What is a greatest integer function?In Mathematics and Geometry, a greatest integer function is a type of function which returns the greatest integer that is less than or equal (≤) to the number.
Mathematically, the greatest integer that is less than or equal (≤) to a number (x) is represented as follows:
f(x) = [x].
By critically observing the graph, we can logically deduce that the parent function was reflected over the x-axis and its domain and range include the following;
f(x) = [-x]
Domain = [-∞, ∞] or all real numbers.
Range = [-∞, ∞] or all real numbers.
Read more on greatest integer function here: brainly.com/question/12165085
#SPJ4