Answer:
Anywhere between -$21 and -$20
Step-by-step explanation:
\(x < -20\) AND \(x > -21\)
Examples include:
\(-$20.01\)
\(-$20.10\)
\(-$20.20\)
\(-$20.30\)
\(-$20.40\)
\(-$20.50\)
\(-$20.60\)
\(-$20.70\)
which equation describes how the parent function y=x^3is vertically stretched by a factor of 4? y=x^3+4. y=(x+4)^3 y=4x^3. y=x^4
The equation representing vertical stretching of y = x³ by a factor of 4, will be y = 4x³.
What is a linear equation?It is defined as the relation between two variables, if we plot the graph of the linear equation we will get a straight line.
If in the linear equation, one variable is present, then the equation is known as the linear equation in one variable.
The function y = x³, and we need to b it vertically by a factor of 4. So, this can be simply done by multiplying the function (x³) by 4.
Therefore, the b representing vertical stretching of y = x³ by a factor of 4, will be y = 4x³.
Learn more about the linear equation here:
brainly.com/question/11897796
#SPJ1
The equation y = x³ with a vertical stretched by a factor of 4 is y = x³ + 4.
Option A is the correct answer.
What is translation?It is the movement of the shape in the left, right, up, and down directions.
The translated shape will have the same shape and shape.
There is a positive value when translated to the right and up.
There is a negative value when translated to the left and down.
We have,
y = x³
Vertically stretched by a factor of 4 means,
y = x³ + 4
Thus,
y = x³ + 4 is the equation.
Learn more about translation here:
https://brainly.com/question/12463306
#SPJ1
There are 6 triangles and 3 circles. What is the simplest ratio of circles to
triangles?
Answer:
1 : 2
Step-by-step explanation:
The original ratio would be 3 : 6, so now you need to simplify it.
To simplify ratios, you divide the number on each side by their greatest common factor. The GCF(greatest common factor) for 3 and 6 would be 3, so divide 3 by 3 =1 and divide 6 by 3 =2, so then your simplified ratio of circles to triangles would be 1 : 2
Hope this helps! :)
SOMEONE HELP FR help me and explain how u got the answer bec i am stuck
to gather data for a statistics project, a student asked 10 friends how many hours of sleep they got on the previous night. The data are shown in the following list. 7 6 5 9 3 4 7 9 5 8 What is the interquartile range (IQR IQR ) of the number of hours of sleep shown in the list?
Answer:
3
Step-by-step explanation:
Given the data: 7 6 5 9 3 4 7 9 5 8
INTERQUARTILE RANGE (IQR) = Q3 - Q1
Rearranging the data: 3, 4, 5, 5, 6, 7, 7, 8, 9, 9
Q3 = 0.75(n+1)th term
Q3 = 0.75(10 + 1) th term
Q3 = 0.75(11)th term = 8.25th term
Taking the 8th term = 8
Q1 = 0.25(11)th term = 2.75th
Taking the average of the 8th and 9th term:
(5 + 5) / 2 = 10/2 = 5
Q3 - Q1 = (8 - 5) = 3
If y = -30 when x = 15, what is the value of x when y = 60?
Answer:
If y = -30 when x = 15
then x = 60 when y = 60
Hello could I get help with this equation
11a+100=12
Step-by-step explanation:
-8
hope it helps:-) :-) :-) :-)
Answer:
a = -8
Step-by-step explanation: Subtract 100 on both sides to isolate the variable. From there you will have 11a = -88. If you divide on both sides to cancel them out you will get you answer for the variable -8.
the manager of a garden shop mixes grass seed that is 60% rye grass with 70lb of grass seed that is 80% rye grass tp make a mixture that is 74% rye grass. how much of the 60% mixture is used
The manager of a garden shop wants to make a mixture that contains 74% rye grass. The weight of the 60% mixture used in this composition is 30 lb.
Percentage is used to denote a fraction of a hundred.
Suppose q represents the weight of the mix that contains 60% rye grass, then the weight of rye grass in this mix is:
w1 = 60% q = 0.6 q
Mix 2: 70 lb grass seed that contains 80% rye grass. The weight of rye grass in the second mix is:
w1 = 80% x 70 = 56 lb
The final mixture has 74% rye grass. Total weight of rye grass in the final mixture:
weight of rye grass = w1 + w2
= 0.6 q + 56
Total weight of the final mixture = (q + 70) lb
74% = 0.74 = (0.6 q + 56) / (q + 70)
0.6 q + 56 = 0.74 (q + 70)
0.74 q - 0.6 q = 56 - 0.74 x 70
0.14 q = 4.2
q = 4.2/0.14 = 30
Hence, the weight of 60% mixture is 30 lb.
Learn more about mixture here:
https://brainly.com/question/4337089
#SPJ4
A wall of a building is 34 inches wide Sixteen inches is concrete, 12 inches is brick, and 6 inches is limestone What fraction of the wall is concrete?
2x A= 24
What value of Awill make the number sentence true?
A 12
B. 22
C.26
D. 48
Answer:
Option A 12 is the answer
HELP PLS IM BEGGING U
Answer:
\(\displaystyle y = 4x\)
Explanation:
Take a look at the endpoint of \(\displaystyle [10, 40].\) If you would just simply divide forty by ten, you will get your rate of change [slope] of four, leading you to the equation of \(\displaystyle y = 4x,\) especially because we are dealing with “direct variation”.
I am joyous to assist you at any time.
PLEASE HELP!!! WILL GIVE BRAINLIEST
Answer:
16
Step-by-step explanation:
18+6=24
24-7=16
the value of k such that (x-5) divides the polynomial p(x)= x^3-6x^2+kx+30 exactly,is
please
Answer:
k = - 1
Step-by-step explanation:
If (x - 5) is a factor of p(x) then p(5) = 0
p(5) = 5³ - 6(5)² + 5k + 30 = 0 , that is
125 - 150 + 5k + 30 = 0
5 + 5k = 0 ( subtract 5 from both sides )
5k = - 5 ( divide both sides by 5 )
k = - 1
The two dot plots below show the number of miles run by 14 students at the start and end of the school year. 100 points and brainliest
Mean for start of school year is 6.5; Mean for end of school year is 7.2.
Median for start of school year is 6.5; Median for end of school year is 7.
How to Find the Mean and Median of a Data Set from a Dot Plot?To find the means, list out each data value given for each dot plot and calculated the mean.
Mean for start of school year:
We have, 4, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 9
Mean = ( 4 + 5 + 5 + 6 + 6 + 6 + 6 + 7 + 7 + 7 + 7 + 8 + 8 + 9)/14
= 91/14
Mean ≈ 6.5
Mean for end of school year:
We have, 5, 5, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9
Mean = ( 5 + 5 + 6 + 6 + 7 + 7 + 7 + 7 + 8 + 8 + 8 + 9 + 9 + 9)/14
= 101/14
Mean ≈ 7.2
Median represents the middle data value in a data set, therefore:
Median for start of school year = ( 6 + 7)/2 = 6.5
Median for end of school year = ( 7 + 7)/2 = 7
Learn more about mean and median on:
https://brainly.com/question/16800683
#SPJ1
1. Phillip bought candy from a shop yesterday. He paid a total of $14 for small candy bars for $2 each and large candy bars for $3 each. The difference between the amount of small candy bars and large candy bars is 2.
Write the system of equations.
After submitting this quiz, read the sample answer in the comment below. Give yourself 1 point if your answer is correct. If you are not sure, ask your instructor.
Answer:
2s+3l=14
s-l=2
Step-by-step explanation:
Let s represent the small candy bars and l represent the large candy bars. The system is
The value of the 4 in the number 124 is ___ the value of the 4 in the number 949 Please help!
Answer:
a TENTH OF THE VALUE
Step-by-step explanation:
Which has the greatest variance?
{5,5,5,5,5)
{1, 1, 1, 1, 21)
{1,3,5,7,9)
{3,4,5,6,7)
Answer
1,3,5,7,9
Step-by-step explanation:
Look at the equation below.
What value of n will make this equation correct?
Answer:
8/3 aka D
Step-by-step explanation:
Answer:
D is the answer
Step-by-step explanation:
3/10*8/3=4/5
a soft drink machine outputs a mean of 2727 ounces per cup. the machine's output is normally distributed with a standard deviation of 33 ounces. what is the probability of filling a cup between 2121 and 3030 ounces? round your answer to four decimal places.
The probability of the soft drink machine filling a cup between 2121 and 3030 ounces with a normal distribution of the mean of 2727 ounces and a standard deviation of 33 ounces is 0.
It is given that the soft drink machine's output is normally distributed.
We know that for any normal distribution with X~(μ,σ)
f(z)= 1/σ√2π . e^(-(x - μ)²/2σ²),for all z ∈ R.
where μ = The mean of the distribution
σ = the standard deviation of the distribution
Here
μ = 2727
σ = 33
We need to find
P(2121< x < 3030)
We know that the relation between a normal distribution and its Z-score is
P(a < X < b) = Φ((b- μ)/ σ) - Φ(a - μ/ σ)
here a = 2121 and b = 3030
Therefore we get
P(2121< x < 3030) = Φ((3030- 2727)/ 33) - Φ(2121 - 2727/ 33)
= Φ((303)/ 33) - Φ(-606/ 33)
= Φ((303)/ 33) - Φ(-606/ 33)
= Φ((9.181818) - Φ(-18.363636)
From the Z score table, we know that the p-value will be
0 - 0
= 0
To learn more about Normal distribution visit
https://brainly.com/question/8006981
#SPJ4
what's the best estimate for 26% of 44
Answer:
What's the best estimate for 26% of 44
Step-by-step explanation:
Y=6x-11
-2x-3y=-7
please help and hurry please
Step-by-step explanation:
Solve by substitution (Assumption)
Given:
[1] y = 6x - 11
[2] -2x-3y = -7
Using [1] substitute (6x-11) for y in [2]
[3] -2x-18x+33=-7
Simplifying
[4] 20x=40
[5] x = 2
Using [5] substitute 4 for x in [1]
[6] y= 12 - 11
[7] y = 1
Solution is (x,y)=(2,1)
Tom has a piece of wood that is 10 and 1/3 inches long. He divides the wood into pieces that are 2 and 1/5 inches long. How many pieces will he have?
find the value of y in the formula y=5a-3b+c, if a=12, b=4, and c=8
Answer:
5. Is your answer for ur questions
Answer:
y= 56
Step-by-step explanation:
y=5a-3b+c
a=12, b=4, c=8
y= 5(12) - 3(4) + (8)
y= 60 - 12 + 8
y= 56
- I hope this helps have a great night
what is the area of this triangle
Answer:
Give the triangle area so we can solve it for you.
Step-by-step explanation:
½*base*height
Step-by-step explanation:
the triangle is not given so let us take its base=b,and height=h
by using the formula=½*base*height
½*b*h
What are the coordinates of the image of the point (2, –6) under a dilation with a center of (0, 0) and a scale factor of 1/2 ? A. (0, 0) B. (1, –3) C. (2, –6) D. (4, –12)
Answer:
B. (1, -3)
Step-by-step explanation:
When you dilate from the origin (0, 0) by a scale factor of 1/2, multiple each coordinate point by 1/2.
(2, -6)
2 × 1/2 = 1
-6 × 1/2 = -3
(1, -3)
I hope this helps :))
Answer:
The answer is (1,-3)
Step-by-step explanation:
I took the test :)
Solve thi ytem of linear eqarion. Separate the x-and t-hirt value with a comma
2x=96-14y
9x=40-14y
The solution which we get for the given question is , x = 5/2 and y = 5/4 answer.
Isolating x,
2x = 9x - 14y
2x-9x = 9x-9x -14y
-7x = -14y
-7x/-7 = -14y/-7
x = 2y
Therefore substituting value of x on equation 2,
9(2y) = 40 - 14y
18y = 40 - 14y
18y+14y = 40 -14y+14y
32y = 40
32y/32 = 40/32
y = 5/4
Therefore , x = 10/4 = 5/2
as because x =2y.
An equation is a mathematical statement which equated two value using the equal sign. Eg.) 2x = y
These expressions on either side of the equals sign are referred to as the equation's "left" and "right" sides. The right-hand side of an equation is usually assumed to be zero. The generality will still be there as because we can balance it by subtracting the right-hand side expression from the expressions on both sides.
To learn more about equations
brainly.com/question/29657983
#SPJ4
yu has 12 coins, consisting of 5 pennies, 4 nickels and 3 dimes. he tosses them all in the air. what is the probability that the total value of the coins that land heads-up is exactly 30 cents? express your answer as a common fraction.
If Yu has 12 coins , that consists of 5 pennies , 4 nickels and 3 dimes , then the probability that total value of coins that lands up exactly 30 cents is 5/120 .
Yu have 12 coins, consisting of 5 pennies, 4 nickels and 3 dimes, and he tosses them all in the air,
we have to find the probability that total value of the coins that land heads up is exactly 30 cents ,
number of pennies ⇒ 0.01 = 5 ;
number of nickels ⇒ 0.05 = 4 ;
number of dimes ⇒ 0.10 = 3 ;
there will be 5 "30cent" combinations ;
the combinations are :
⇒ 0.10 × 3
⇒ 0.10 × 2 + 0.05 × 2
⇒ 0.10 × 2 + 0.05 × 1 + 0.01 × 5
⇒ 0.10 × 1 + 0.05 × 4
⇒ 0.10 × 1 + 0.05 × 3 + 0.01 × 5
so , the probability that total value lands up exactly 30 cents is = 5/(5×4×3×2)
= 5/120 ;
Therefore, the probability that the total value of the coins that land heads-up is exactly 30 cents is 5/120 .
Learn more about Probability here
https://brainly.com/question/10650737
#SPJ4
Three vertices of parallelogram PQRS are show: Q(8, 5), R(5, 1), S(2, 5)
Place statements and reasons in the table to complete the proof that shows that parallelogram PQRS is a rhombus.
\(PQRS\) is a rhombus since \(\overline{QR} \cong \overline{RS}\) and \(m\angle R \neq 0^{\circ}\), \(m\angle R \neq 90^{\circ}\) and \(m\angle R \neq 180^{\circ}\). \(\blacksquare\)
How to demonstrate that a given figure represents a rhombus
In this question we must prove that a given parallelogram is a rhombus. A rhombus is quadrilateral with four sides of equal length and two pairs of angles of equal measure, different to each other. We must demonstrate that \(\overline {QR} \cong \overline {RS}\) and \(m\angle R \neq 90^{\circ}\) and \(m\angle R \neq 0^{\circ}\) and \(m\angle R \neq 180^{\circ}\) by geometric and algebraic definitions and theorems:
\(Q(x,y) = (8,5)\), \(R(x,y) = (5,1)\), \(S(x,y) = (2,5)\) Given\(QR = \sqrt{(5-8)^{2}+(1-5)^{2}} = 5\) Pythagorean theorem/Line segment length formula\(RS = \sqrt{(2-5)^{2}+(5-1)^{2}} = 5\) Pythagorean theorem/Line segment length formula\(QR = RS\) (2) and (3)\(\overrightarrow {QR} \,\bullet\,\overrightarrow{RS} = (-3)\cdot (-3) + (-4)\cdot (4) = -7\) Dot product\(\theta = \cos^{-1}\left(\frac{\overrightarrow{QR}\,\bullet\,\overrightarrow{RS}}{QR\cdot RS} \right) = \cos^{-1}\left(-\frac{7}{25} \right) \approx 106.260^{\circ}\) Dot product\(\overline{QR} \cong \overline {RS}\) (4) and (6)\(PQRS\) is a rhombus. (6) and (7)/Result\(PQRS\) is a rhombus since \(\overline{QR} \cong \overline{RS}\) and \(m\angle R \neq 0^{\circ}\), \(m\angle R \neq 90^{\circ}\) and \(m\angle R \neq 180^{\circ}\). \(\blacksquare\)
To learn more on rhombuses, we kindly invite to check this verified question: https://brainly.com/question/4165249
Solve the radical equation. which is an extraneous solution to the radical equation? x = −1 x = 1 x = 5 there are no extraneous solutions to the equation.
Option D is correct, there are no extraneous solutions to the equation.
The given equation is \(\sqrt{8x+9} =x+2\)
Let us solve for x:
Take square root on both sides:
\(8x+9=(x+2)^2\)
\(8x+9=x^2+4+4x\)
Now take the variable terms and constants on one side:
\(x^2-4x-5=0\)
\(x^2-5x+1x-5=0\)
\(x(x-5)+1(x-5)=0\)
\((x+1)(x-5)=0\)
x=-1 and x=5 are solutions.
Now, we will check both solutions to find any extraneous solution as:
\(\sqrt{8x+9} =x+2\)
When x=-1
\(\sqrt{8(-1)+9} =-1+2\)
\(\sqrt{1}=1\) so, it is true.
Now check for x=5:
\(\sqrt{8(5)+9} =5+2\)
7=7
Hence, there is no extraneous solution to our given equation and option D is the correct choice.
To learn more on Equation:
https://brainly.com/question/10413253
#SPJ12
Complete question:
Solve the radical equation. square root of 8x+9=x+2
Which is an extraneous solution to the radical equation?
(a)x = −1
(b)x = 1
(c)x = 5
(d)There are no extraneous solutions to the equation.
The area of a circular garden is 121pi
square feet. How much fencing would
be needed to enclose the garden?
Answer:
22 pi ft
Step-by-step explanation:
We can use the area to find the radius
A = pi r^2
121 pi = pi r^2
Divide each side by pi
121 = r^2
Take the square root
sqrt(121) = sqrt(r^2)
11= r
Now we need to find the circumference
C = 2*pi*r
C = 2* pi *11
C = 22 pi ft
Answer:
1. Use area to find radius.
A = π r^2
121 π = π r^2
2. Divide each side by π.
121 = r^2
3. Take in the square root .
\(\sqrt{121} = \sqrt{r^{2} }\)
11 = r
4. Find the circumference .
C = 2 × π × r
C = 2 × π × 11
C = 22 π ft
A marksman at rest fires a 4.00 -kg gun that expels a bullet of mass 0.014 kg with a velocity of 181 m/s. the marksman’s mass is 81 kg. what is the marksman’s velocity after firing the gun?
The marksman's velocity after firing the gun is about -0.63 m/s (in the opposite direction of the bullet's velocity), as calculated using the conservation of momentum principle.
The conservation of momentum principle can be used to resolve this issue. The initial momentum of the system (marksman plus gun) is zero, and the final momentum is also zero because the bullet and the marksman have equal and opposite momenta. Therefore, we can write:
initial momentum = final momentum
\(0 = (M + m) * V + m * v\)
where M is the mass of the gun, m is the mass of the bullet, V is the velocity of the gun after firing, and v is the velocity of the bullet after firing (which is 181 m/s in this case).
Solving for V, we get:
\(V = - m * v / (M + m)\)
= \(\frac{- 0.014 kg * 181 m/s}{(4.00 kg + 0.014 kg)}\) ≈ -0.63 m/s
Therefore, the marksman's velocity after firing the gun is about -0.63 m/s (in the opposite direction of the bullet's velocity).
Learn more about velocity here:
https://brainly.com/question/17127206
#SPJ4